
WAR

R

CD Includes Theatrix, a powerful C++ library games engine

Four full-featured games, complete with source code

Complete game-builder’s tool kit

C++ Games
Programming

Al Stevens
Stan Trujillo

M&T =
= cocn=oe

oD

M&T =
= [==]=[==]

-_—
oe)

MA&T Books
A Division of MIS:Press, Inc.
A Subsidiary of Henry Holt and Company, Inc.
115 West 18th Street
New York, New York 10011

© 1995 by M&T Books

Printed in the United States of America

All rights reserved. No part of this book may be reproduced or transmitted in any form
or by any means, electronic or mechanical, including photocopying, recording, or by
any information storage and retrieval system, without prior written permission from
the Publisher. Contact the Publisher for information on foreign rights.

Limits of Liability and Disclaimer of Warranty
The Author and Publisher of this book have used their best efforts in preparing the
book and the programs contained in it. These efforts include the development, research,
and testing of the theories and programs to determine their effectiveness.

The Author and Publisher make no warranty of any kind, expressed or implied, with
regard to these programs or the documentation contained in this book. The Author
and Publisher shall not be liable in any event for incidental or consequential damages
in connection with, or arising out of, the furnishing, performance, or use of these pro-
grams.

All products, names and services are trademarks or registered trademarks of their respec-
tive companies.

Library of Congress Cataloging-in-Publication Data

Stevens, Al,
C++ games programming / Al Stevens, Stan Trujillo.

p. cm.

ISBN 1-55851-449-X
1. Computer games—Programming. 2. C++ (Computer program language)
LIL, Trujtllo, Stan. Il. Title

QA76.76.C672S74 1995

794.8/15265 20 95-30653
CIP

97 96 95 94 4 3 2 1

Editor-in-Chief: Paul Farrell Managing Editor: Cary Sullivan
Editor: Debra Williams Cauley Copy Editor: Betsy Hardinger
Production Editor: Anthony Washington

Dedication

To my friend and father, Art Trujillo
5. T

To Woody
A. S.

Acknowledgments

Thanks to Ed Trujillo for introducing the authors.
We would like to thank Patrick Lujan for supplying the Sky Scrap demo,

and finding bugs.
We would like to thank the following authors for letting us use and

distribute their software:

Gary Maddox—Blaster Master
David Mason—Dave’s Targa Animator (DTA)

John Ratcliff—DIGpack and MIDpack
Diana Gruber of Ted Gruber Software—Fastgraph Light
Paul H. Yoshimune of Handmade Software, Inc.—Image alchemy
Lutz Kretzschner of SoftTronics—Moray

Jim Conger—Midi Sequencer
Neosoft Corporation Neopaint version 3.1

Owen Thomas—Astrofire

Table of
Contents

CHAPTER I: Introduction00000 cool

TIEAEEIR vr como sow iwer no coe 0 085505, 5 656s 56 i600 § 660s HEE HES 6 oi mis a imiomts ois are 2

ODbJECIVES «vv tteeter eee3

Details: What to Know, WhattoHide 4

Levels of ADStractionouir eu enieiiiiiiiei eee4Encapsulation... 5

The Theatrix Metaphorc..iniiiiinnrernneeenneeennnn. 5

Performanceuuiu eteeee 6

A Comprehensive Toolkitccoviiieniiieiiiiiiiiie.. 6

Extensibilitycccoeniiiiii 7

WHO ATE YOU? oot ttt tt ett ee tee ee tae iaia ine aaanensasens 7

What do You Need? .oo. 8

Your Rights and Some Restrictionscooiiiiiien.y 8

Getting Helpocovvivvnsodaiiinseiomnssonsssnsssvsansnsesss 9

The Organization of This Bookcccoiiiiiiiiiiin, 9

viii C++ Games Programming

CHAPTER 2: GameTheorycccivvvivvnnnennenn..ll
Barly Computer Cambs: «iBii ai we ea 12

EES cavehs seed bo aay a 12
SPACEWAL ooters at Ts ew 13

BME et emo WE 5 0 0 se As HEi 4 vo es ce 0 En 13

BERD LL, a ds ri i Bm mo TA er et Sp ihre at pS 14
CONtEmMPOrary GAMES . 0. iar nisms nt os ob mms shan sss ens cus 15SEMELA bs a 16

DEI DRRTER DISTR «oy viva ms is ws ob Ses 4 535 ms Ht 5 whim oe a 17
Static Display: MSE Con oli. on iv inh awi be ie sw bs 18

SOF Bnd Backgrounds |, Ji, 0 het ee tas ne vk ew des as 18

TREO Ts ys ix mor i ssnin om i600 5 WEAR Motel GE 5 6 BS) 0k dH mm mn 19
BURNER “les co isi ps ee 1 Tt ml WB Se bs ue hp ep20

BBE. oo o' 8 icin otis fa me Temi fret x Clin20
VAIO0Te «oo Dail sms dv Ban 5 bk Bo me 8 21

Sorient NINIBIC: clini Ve avd wii a CT ee sr 21
DBBIEE. ohio oye he Sn we Bis x 00 Sh Be to hl 1 5b PE EE 21
GOPHONEiwv 5 Tow 5 A Crna bot oo 00h HE watts oh Toe fm Sei fr ir 3 8 22,

Saving Canes In PYOGIess .. oni cvvsinuess vos vans tommt sans i22

TETRTU AIBa OT CL EE23
KOBDMB BOOTIE | (x ova bo sinin somo bs mois nbs nis vo a ee ee vi23

The Question of Sex and Violencecvvviveinuneevesnnnsess 24
What about Standards? «iiss ein vase ds sass ss eens 25

CHAPTER 3: PC GameTechnologyco0vuu....27
Why Learn about HardWare? oo cocosinhasiiinm seme tanita 28
Event-Driven, Message-Based Programming 28

CE CORRIOIIEIG 0 vu oie weit Cah bh ite 5 ass Be be 29
BENDEL ©. is doles vi mines Pins waded BURNS a SUS Res el od 29
VIOUBE Ears is itl ores 550 10% Be im or Bl Ea oe Ba30
TORREIBIE i000 5 ci 3 teni ol Bo et By om331

Table of Contents ix

SETIAL POEL. + «vio vom iewie somes sco msis sims imo alsis bn ein woos aise sso34

VEAEO otter ieae35

VidEOMEMOTIY +o vovvvvvvvrrvannsoacesossssossnssssssasansos 35

VIdEO MOAES © eet eteeee 35

Video Page Buffersoiiiiniiiiiiiiiiiii 36

Bitmapped Graphics Filesooooiiiiiiii 36

THE Palette ov ov eee eee eeeee 37

Graphicscovvvevvnuroanmeanncosoneesssssnassssstsoiinas 38

SOUNA © tte t teeeeerea41

What Is SOUNA? ottteeta 41

Recording Soundcoovevvrrrannrncresnnrinsnananssooes 41

Digital Recordingooiiiiiiiiiiiiii 42

SAMPUINE © o\ vettetei 43

VOC FILES ott teeta eee teeee 43

IVLEBIC + oo so orm se oemme 60 alos i 5a oid 5168804 Bias os owas somos ows dass is 44

Setting theMood... 44

MIDeeeeeae 45

Composing MUSICvvviierreeniiiiinnnereiinaeens 47

AcqQUIriNg MUSIC ...vvviinntrina 48

ReCOTdINg MUSIC... vvvvvvtiieeteee etna eeeees49

Adding the Musical Score tothe Gameoooovnn 50

32 Bits and Protected Mode...oot 50

CHAPTER 4: Game-Building Strategies53
SEEICTY ii sons 58 5 ¥ 58 5 a8 $m wm siwmas mins aBHETIHEE $ 0H muy sum oak 54

SCANDINE 5 sss cammpsmmpusmmes somssommns EEFEIRGHES FIHOE EIB T 0 54

Painting with NeoPaintcooiiiiiiiiiiennn. 55

3-D Modeling with MORAYcoven 56

Ray Tracing with POV-Ray... 59

Converting Bitmapped Graphics Files with Alchemy 61

SPIES «.voswnisanmss ammis ui winbon bie wpm alak sas bbd mms site np roms e 62

Xx C++ Games Programming

FRORR Be oaaeree 62
SEY AOE BORED © il iene Eea sn Se 63

Dab BO MAOels iii ve vin Cie a oy Fait63
BUREN ei ier bi re re a Lr Eg mE es 65

MotionOtt Frame at A TUNE... histo alain eo65
Plotting the Two-Dimensional Coordinates 66
SEERA TRON. on RR alpe67
BRINE ye evs aenTe67
RELI EINE sii on, cieb a 0 Se Sa LE 68
The Trauspavent Regiomgof A Sprite il vivo clann iil, 70
How Animation Works In Theatrix oie isin siiiir 71

DEEAIIONE ia sesARR eR 73LnSR SNE he lS SEESs 74

BaitVideo Clos with BYYA ooo cin ome 75
Playing Video Clips with Fastgraph00oooi... 76

PORE LION veritas ir Gnd ea 76

DEPREECE 77
Recording Bound BIfocts ouside i vat ciaa 77
Playback with CT-VOICE Of DIGPAK «i uveitis vsioninsinin 78

EREi sims crip ba a as Aiee Se 78
Recording Muale with MT iv. voiiilin ve disavom ol ssa pa 79
Playing Back Music with MIDPAK ... 0 oisusie 79

CHAPTER 5: Theatrix, A C++ Class Library81
The dN Mbtaphor 0.0. atedre82
Tonarts Chui FReBrohiog o.oo iii vs maaan 82

Tus Theatr Clann 000 0 ooo Pll Sleae82
Tie Theattix Class LIBRE. oo 00 oi bs ch Dov vs 83

TOR TINaRaes «LnLe a aeLet 85
TRE LBS Mabe Lhdelrae 86
Requesting and Stopping Cues During the Game 91

Table of Contents xi

Level 1: Directorsand Handsiin...92

The Director Class ..o.smws ssass ssans iasssasaasennas inns nn93

Stopping the Directorcouiiitiiiiiiiina. 93

Level 2: MusicHand and VocalHand 93

The MusicHand Class ius cam mnesmne sume sdea'dssusfas $560 & 560 93

The VocalHand Classcoiiiiiiiin initia. 94
Level 3: Performers and VideoDirectorscccovuve....96

The Performer Classuiiineee ieee eee 96

The VideoDDirector CLASS wos smus viwmms si mmo sms §mmes sows 58 60 96
Level 4: SceneryDIreCtorsvuveenvn en eneininnenen. 96

The SceneryDirector Classcouiiiiiniiniinnen.. 96

Level 5: Players and SceneDirectorsc.coveuvrevnnencnnnn 97

CHAPTER 6: Theatrix User’s Guidehe 54 was 97
Managing Graphics File Libraries 100

GEXMAKE ©ee 100
GEXSHOW. ions sommes smmes sm mme £55888 aes £55 e mses ede: ss 101

SHOWRPEX. Lover viv vins ooiome Somme 06 6 60d 505 8508508 506 9808 6 818 8.0.08 101

Managing Sound Effects Libraries 101

SEXIVLAKE: suis vw asis mss 80m sis oa sso mois ds 6a 66 ow ws owas 102

SEXPLAY . oevoniins cus onidios samns aes fem as somes sees: somes sp 102

Palatte Management Utilitiesviii. 103

GET PALiee eee eeee 104

CVTPAL: sos smmsos as i moms s6a0s se Mme § GW%5 50S Es sams sms oi 104

GENPAL oo vomnr cits 54505 $3R#3 SaHRS SHR TRF Fi6655 6E6HE 813 105

Making Mouse CUISOTS «ot vtvinta 105

GMICEeeee 106

Miscellaneous TEIHIES o.iewws sims oman vines suns: tpsms mans so 108

PASTE civ vies suensbins omine 5 556 bl 3rs dk it 0nd 60 9G 0 @ HS VRE MA e830 108

REGION iiss ifn shies es Amelio rosa lis » ivnbis 5 10 fom oo 540 0 5 od 8 91 5508 109

xii C++ Games Programming

CHAPTER 7: Theatrix ReferenceManualI11
Class Library REIETeNCe 5 ui vii sue ie wos she bi sniiia win Ba as a isa bg afot oo 112

DIRECEOr (HEECEORR] «iu v ivi vow io 5s subarea lh bes teraa is sions oon dd 112

Hand {BandR)z 2 oie iis gi coms ms db aa ei «dems a sein 5 ee 114

MusieHand {MUSIC} © wor ai svn obs bad diss dobar s Lars wis vom nreds 121

Performer Perform] ii Fate ive di sieiinielin mies so dor ob Toner ons wes 122

Playeriplayerih: .. flo dom omobst so i 5 sors vom sot is he esl rs oii 75 125

SceneDirector (SCENBMIt A). «osc women es baila dois Gs aah dose oh 129

SceneryDirector (8CenerYh] vv. www vrs he iia ae aa eee 130

Theat [ORRatTI Br) iin on poe wb vith sm os mw wk dacs Bo 50d 131

VideoDirector (VIAQIEh). ©. Jw ovis vr slh bis siesbris wu sos ma ss sas 4.0 133

VocalHand [Woeabh) “os ee sins vs a deSe ha i we 136
VIACYORIE Lalit. fi Fa 50 5 oon mnie o vo 35 ob emir fonts of fers mh ox se 3 Tt Bs 138

EE CRRIIST (hah vin oe eb BEaTE 138

The CURSORLIST {scenery h)vvives ivi imensmsi sings 141

Mouse Cursor Shapes (scenery.h) 142

Assert debugBi]ies rae keener Ee 143

Adjusting Theatrix (settings.h) 143

DEFAULT VIDEO:SMODE Fay sho va sie ci vs om abe sweetie 6 008 oe 143

MARDIREC TORS" «2 ale is a alts bitte she bist baba Sons vm ol at os eon aie is 144
MAXBELIBS: «ive cri Ware was ome aid sabes bends bos als sos ost oo sais 144

MAXHANIDS 1", 4 sos 08 din do dois ois il 00 Lots a las a sme dots, sod sine 144

MAXMESSAGE: i5s ciiviin dare oom 0s mbar swiss ita as od 4 oe 4 oust sw a 144

MAXINETPACK©i, a5 an ses don mas 338 soe and o a8 oh as gd hoe ae bik vn 144

NUMPRECHIES seine ms os shat smicars ss bss © 56 688m 0 Ss 144

Keyboard ASCII Codes (asciih)coviiiiiiiiinnnnnnn., 145

Keyboard Scan Codes (scancodeh]cc0vvvivinvennnnn. 145

Controller Button Symbols (standard.h) 147

CHAPTER 8: Theatrix Technical Specifications 149
Classes and Data SEIUCLULES «viv owns oios tenn enn ons snnisneionss 150

Table of Contents xiii

Theatrixoot 150
Handso.oo 156
IDIXEEEOTS

vo ocv evo vio cere mo soos on oe 6 ms oe 656 0 9150 60650 5 F805 6 6 B53 157

More Hands...o.oo 163

File FOImMats . o.oo ttt ee eeeeee 167

Scenery: PCX iacoccmns cows 550m 6 08505 0 8568 500s #59000 605 88 55,8958 167

Sprites: GEXoo. 167

Sound Effects: SFXoo. 168

MOSICT IVIL ots mss avs 6 i 9 50 00 800 800690 6666 6% 01 9 48 0° 5414 169

CHAPTER 9: Development Environment17I
The Game Developer's Subdirectory Structure 172

Source Codeott 173

MAKECEG: «i coos smn samo ss sins 6550s 000 oe oo 8 8a eis 6 ames so 173

Game Source Codevvieiininiiiiiiiiiirre i aan 177

Header Filesooiniitte eee eee eee 177

Library SourceCode... 178

Utility Programs Source Code: : iw vs vwibs swsa smmens sw ssinnss on 178

Game Data Filesoii 178

Background Scenery Filesiii 178

Sprite Tage PIES . couwcomios vmmus sams ¢ sams cums samavsomns 179

SOUNG EHECES vv vv vovivinie somo sain ore nin 8405 6 355 i hes stam ste 5 46 179

MIDIMusic Filesoiiiii 179
Librarieso.oo 179

DIGPAK/MIDPAK DIIVETS «vos ci vns swwsssnmusesns snmassssssss 180

Utilities and TOS. «vc vs somes sama d Ean g dams £666 s 8H s0806 6655 180

Theatrix Utilitiesccoei 180

170)Ps 181

IMA AICRHEINY i wv view se 55 woos 5m 5555 Siw srs 8 hers i 51 sm in 0 68 5 dsm v5 3 181

DTA vein eon dd o song minions lags 5s 54 Gok $90 405 8 SE008 B00 B € 1096 08 8 10 0 87's fo 181

MIDIFORM oiicece eee 181

xiv C++ Games Programming

Game MAKEFILE «ov cs vr sm oem sin 65008 000 5s mob 546 bison ams vd ase 5 0 182

Game Executable Filescuviivitnivminomnivmenscasionnines 183

NetWork REAAEIING . vvv vies ives oie wo inio sive wos ss oss cna sears sisi s os 184

Configuration Managementviriiineenneennenn.. 184
THe OBJECEIVE | : wc werd mals fin sss and Vouk wiild iden osdld a Sn 5 wre 185
TREINBEWOTK251 fui hon viet ive bn dein tania sins To we sors 8 8%05 brs 00 185

The Configuration Managerc.ccuuuiiennn.. 186
FRE BABOHIRG1,25 vse 6 wile ribo, 65 0 5. & oo le AT wb a Le 186

MERING CRANTES 5 i 5: fo aceite s i sore 1 Bos on 155 3b 5S Sho 187

CHAPTER 10: Example Game Programs189
EERLind sos sow we FH bes wh BL Eas ret ol be 8 i 190

The TextModeApp Classcviiiiii ieee. 190
FRE PRE FAN 0 is 5m mn a oe 1d bn ee TY he 191

The TextModeDirector Class vvisis oe seins oss on essa 191
THE SERUP SOTOBIL | . ic ovv hots omns ombinisms ss dois enihs ss dvs 193

Running the Textmode Democovvivirniiinnnennsennss 194
NVIOUSE ns 0 Gin i 5a 505 uo 10 Tuco co Se eb USE 2 5 oo eS ART Se 2 | 5 196

The MouseDemo Class: ii views ob sib emis iors +5 win Fabia 54s ds 196
MOUSCIEVEIIES" 5 oo ilinss fo dss wrssrs nis b ree bos white babi fiddle ar 197

PHBE sin ins smn: 08 0000 5 age se bb wh od 75 fed Sa a 198

The DetnDDHIector TIABE . . oo jovi vii 5b mod brie nts + noe fo dw v5 & 198
THe SPIite CLASS. “.. . «vw vs vig reais informs ow 5 vis 0 810658 Wier § abn s ehh des o 202
The PlanetDemo Class... coi cvvs cons vnnse comsssonssnsnnsoss 204
THe Tain FORCHION in iis m5 6 son iva 8 Pei he doh Ai Bi204

FICHTAETTOR 12047 0 itso 5 onc 10 355 Boe ota oath elbmons & #iT B me Fo far 205
SOURCCHPS. retin otis oviges we 1 5 10000 Bootes 5 BR ee Toy Snir 206
ANOICECTIABS 5 + sip 6: vio fo 5 hsm st ie BT 6 5 ais on 5 sobs Sa 2 4 207
Flavin Bound CHDE «os iim iam ss wb b aiid 5 oii 55 wis wiiiadsane os 207
Building the SEX LIBIaryounieues inves snes sonssinns 207

SIABT cr Er os ro) at a ve a ses ven Ele Eth ete: 5 1 ie il ns208

Table of Contents xv

THE POA CIA. & cnn vamms 0635 05055 500 85 § sits bund he o oem mr «00 208
The Skater Classooiiiiiiiiiiiiiiinnnn.. 211
The SkaterDemo Classc.iiiiiineeiiinnnnnnn. 215
The main FUNCtion cities. 216
The MusicHand Objet oo coems sons inna sans s5ens saan isin 216
Building the XMI Library cco... 217
Playinga Music CHPoitii eeeeee 217
Stopping a MERE CHE soixssns snnnimsnsi mst Vabss bamnss dons 217
Testing for Music Playingccuuiiiiniiinnnennnn.. 218
Terminating the Music Drivercciuu... 218

Marble Fighter219
Introand Help Screens couture... 219
IVICTIUS:

5 cvs so mmus cmas sks shims dabins sams §ommas amon s mess221
The Fight..... 226

Multiple-Playerii 227
TOWEL omisrc smmosmmas cmaas oats mais dma iaanssm Bas aman 228

The Town Class o.ooeee ees 229
CUELIST and CURSORLIST Tablescouuiiino... 230
Callback FUNCtionsouuuiiiniiin einen.231
Playing Music and Sound Effects 232

Stopping the Gamecouiiririiin..233
The Derived Town Subclasses iin... 233

Navigating the Towniin. 234

Playinga Video Clipcvviiiiiiniiiiiiin incidences 235
The TownApp Class...eee 237

TReatris «o.oo 237
The MENU oooeee eee eee 238
TRE PIE: viv soins i asm aime i 6085s 65 556805 8 5405 5166 5 #5 of 65s 16 0 240
Game Piecesiiieee 241

ShOOtOUL«ot 242,

Multiple SPrites'viit 243

xvi C++ Games Programming

SOREN IATTEIATION. 5 iin ors asin ie 550 robin) ib ES Ah ie SAL Ere m243

CHBDIRG a vied sleet a minal bis svwi hd Sa nan245

SRYSErap vin ai phad sesihg Same TESA a Vas 245

Video Mode ai ond nna RR a EL Ted 246

JovsEokes or rr En se ne a ra RL aR Ea246

Backend Scrolling voici vive il onli B un afd ds SRA 248

CHAPTER | I: TheTheatrix Toolset Sete eee .249
ARGUE BRATEWATE To hl a de ee A BEER fe 250

Documentation and SUPPOLL uv .vvvi ibifinos oa Gi dabei van she i 250

Tonle ar sol ihieea eC al ie a as250
DNEOPRITIE 7 1 is ees 5m so miest Bs ons EA Brass ses fo al Rl Bint 6 251

MERAY. oy ii te barat a ol Tle cat 4 ah, MET Teh ¥ er se As VE 251

PONCRIEY “vidi srs Waa maeibbin a 470 oi Fenda ats lord 313, eer Sea ate, a Fe 252

ALCHEMY oa La she a a BAe Se eT a ae252
POVIIEE vs aa i sm tam fe a we TRA Saucy, VIO: Moe Ere i eon 253
BlasterMaster: ov on maaanEeSn 253

Dave's FGAANIMAtOr ©. om Vi os aiid i nie sda ve 254
MT-—Multi-Track Sequencet/Editor vi ii vets divas wos smvsingg «dé» 254
MODENEBAT nl brs iin ora eis ot ois vad aes aiiants +5e 254

EaesTR tains of bl ee SE i oe Fae Relish 255

Basterarid- 00 ies on im of Soe Di ta ts Es Bs a255
DICGPAR an@MIDPAR. «.o. iiisii ons oamiim sos wis smibhdis ors asm avs os256

APPENDIX A: The CD-ROMciivviitnanssrrisanss 257

APPENDIX B: Theatrix C++ Header Files 265

BIBLIESIIRIIEY ci svisiivnsissnpissserssnssbnsviod dd
GLEINRINY «i ociinnbieininnsas rami dssndsreaspsssnseoddt
INDEX ..icossio ER EL LE ERE RL Se Re

Preface

This book is the first in a series of two books about writing computer games
on the PC in the C++ programming language. This book addresses games that
run under MS-DOS. The second book, still under development as this book
reaches the market, will be about writing game programs with the Win32
application programming interface—32-bit applications that run under
Windows 3.1, Windows NT, and Windows 95.

The premise of this book is that programmers can build professional-
quality games in C++ by exploiting the wealth of shareware, freeware, and
public-domain graphics and modeling tools that are readily available and that
support game development. You can use inexpensive tools and libraries;
some of them are free, and others are shareware—available for you to try out
first and then buy only when you are satisfied with the results. The CD-
ROM that accompanies this book includes many of these tools. This book
goes one step further by introducing and providing the source code and
documentation for Theatrix, a C++ class library that encapsulates all the
behavior of game programming in a simple interface. The Theatrix paradigm
uses a metaphor wherein game development proceeds much like that of a
theatrical production.

xvii

xviii C++ Games Programming

There can be no doubt that computer games are entrenched as a vital part
of our culture. From humble beginnings, they have spawned an industry that
now ranges in scope from the serious business of aircraft and spacecraft flight
simulation to the whimsical trek of cute sprites through mazes of obstacles
and rewards. Astronauts learn to handle orbiting spacecraft by using flight
simulator software. At the same time, ordinary people stand in line to pop in
their tokens and use the latest simulators at the local mall’s arcade. They fly
through space, drive the Grand Prix, or engage in street battles with ominous
cybernetic opponents. New home computer games such as Myst sell out as
soon as they arrive at the stores. Games such as Under A Killing Moon have
the appearance of movies, with real actors who seem to interact with the
game player. TV series and movies are being produced with computer games
as their central themes.

People have always played games. It is in our nature to create imaginary
environments and situations in which we play roles and fulfill our inner
wishes. An infant concentrates on toy objects, centering its play activities on
the toys themselves. As the child matures, objects take increasingly smaller
roles in playtime and give way to imagination. The objects become artifacts
in a larger imaginary world that the child creates in its mind, often with the
collaboration of other children. And thus the child invents role playing.

The games and roles that we play as children prepare us for adulthood. Our
ability as adults to relate to one another on civilized levels stems from the
social skills and lessons we learn as children when we play together. In a
nonhostile environment, we as children learned about appropriate and
inappropriate behavior—what works and what does not. And we did that by
creating circumstances and situation within which we could act out various
roles, trying out different behavior. Our reactions to one another conditioned
us to associate different behavior with approval and disapproval at the peer
level. The disapproval was nonjudgmental and was soon forgotten by the
disapproving party, but the object of that disapproval (and of approval, too)
learned valuable lessons from the experience.

Gradually the fantasy worlds of the child assume lesser importance as
adult responsibilities require us to deal routinely and effectively with the
world. The success that we achieve in the world is often a measure of the
quality of our childhood and the degree to which we as children enjoyed
meaningful play.

Preface

But the child in us never dies. Despite the challenges and obstacles of
survival and adult responsibilities, we continue to enjoy playful activities
throughout our adult lives. Over the years the games change, and so do the
shape, function, and cost of the artifacts of our play. As we invent
increasingly convenient ways to provide our basic needs, we must likewise
invent new ways to occupy the leisure time that results. Adult games and
their artifacts are more complex, challenging, and expensive than those of
children. Golf clubs. Sport and recreational vehicles. Stereos. Vacations. Club
memberships. Computers.

Computers, indeed. The computer has changed or influenced virtually
every aspect of the human experience in the half-century that usable
computers have been around. Computer games are an example of that
phenomenon.

No one knows for sure who played the first game on a computer or what
that game was, but from at least the mid-1950s, and perhaps earlier, people
have been using the computational features and storage of computers to
simulate worlds, universes, and the rules of game play. For many years,
access to computers was limited to those who worked with them. However,
due to the size and operating costs of those early computers, personal and
recreational use was mostly discouraged, and game technology did not
advance much. The personal computer revolution changed all that.

There have probably been more different game programs developed and
distributed for personal computers than programs of any other kind, and that
circumstance continues today. But most such programs fade quietly into
obscurity: Perhaps a game fails to interest users; maybe the author does not
adequately market, distribute, and support the game; in many cases, the
game’s implementation is simply amateurish, unreliable, or inefficient. This
book does not tell you how to design the concept for a successful game or
how to bring it to market, but it does provide the tools with which you can
build games that exhibit the professional touch—animation, photo-realistic
scenes and characters, integrated sound effects and music, and fast displays.
Lights, camera, action.

The evolution of PC game technology and the complexity of PC game
software have kept pace with the advancing technology of personal computer
display, storage, and processing speed. Until recently, however, the evolution
of game development did not track advances in programming technology.

Xix

C++ Games Programming

Object-oriented programming languages and graphical user interface
operating systems were not among the options of serious game developers.
As effective as those tools are for developing commercial software and
hosting its operation, those environments were traditionally far too
demanding of the computer's resources to support games of any consequence.
Most games were written in C, assembly language, or a combination of the
two, and they “took over the machine,” which means that all the computer's
resources had to be dedicated to the game while it was executing.

All that has changed. Contemporary mainstream desktop computers
possess sufficient internal memory, removable mass storage, and processing
speed to support not only the operating systems of today but also applications
with heavy resource demands—and those applications include games. The
work represented by the contents of this book and its accompanying CD-
ROM reflects this revolution and its consequences.

From Al Stevens:
In the summer of 1994, Stan brought his Theatrix C++ class library to me for
my opinion. I've never been a game programmer, but the level of abstraction
in the class design was so impressive that I decided to give it a try and write
my first computer game. In a couple of days and with only about 500 lines of
C++ code, I built an arcade-style game with background scenery and sprites
that move around the screen like the characters in an animated cartoon.
Most of the work was the artistic part—designing the scenery and the sprites
with a paint package. That one facet of the project is what fascinated me. By
using good tools and a well-designed class library, you can concentrate most
of your effort on the important stuff—the artwork.

After realizing that virtually all the game-building tools we were using are
shareware or free software, Stan and I decided to enhance and improve the
library and develop example games that people could use in the development
of their own games. The project was compelling. I found myself engrossed in
subjects that I had long ignored: 3-D modeling, ray tracing, image palettes,
animation, sound generation, MIDI music files.

Eventually, we had to decide what to do with the project. As far as I was
concerned, there was no problem finding a medium with which to distribute
our work. I'm already a book author, and game programming books are

Preface

popular now. Fortunately for me (and for you, too, I think), Stan agreed, and
this book is the result.

From Stan Trujillo:
Foras long as I've been playing video games, I've been fascinated by them. As
soon as I saw a game, I'd want to play it, and as soon as I played it, I'd want to
figure out how to win. Beating a game wasn’t enough, though, because after
winning, I'd want to win all over again, but this time with style. All the
while, during each stage of involvement, one question plagued me:

How did they do that?
This question bothered me for years, and the answer (which I was slow to
realize) was: with tools that you don’t have.

Behind each game, I pictured teams of eggheaded computer scientists who
were so smart that each of them was in a perpetual state of creative bliss. I
though that each one of these geniuses was capable of sitting down at any
computer and writing a complete game from scratch without any special
tools and without once needing to consult a manual.

This fantasy could not be farther from the truth. Every game that you've
ever seen was written by normal people on normal computers. What do they
have that you don’t have? Tools. Not just generic tools such as compilers and
editors, but game-specific tools such as game engines, sprite designers,
palette utilities, and sound clip editors.

When 1 finally figure this out, I decided to write a C++ class library that
was designed specifically for the development of games. I planned to use it to
develop my own games, and perhaps I still will, but in the meanwhile, I

showed it to Al. Much to my amazement, he suggested that we co-author a
book on the subject. There was no question aboutit (but I tried to act as if it
was a tough decision anyway). We spend a few months enhancing the library,
writing demos, and collecting great shareware and freeware utilities. It was a
lot of fun, and I couldn’t be more pleased with the outcome.

Introduction

“Play it, Sam,”
Ingrid Bergman

Welcome to the world of PC game software development with the C++
programming language. You are about to embark on a rewarding and
enjoyable journey, one from which you may not want to return. Whether you
go beyond this book to build the next great, wildly successful, player-
addicting game remains to be seen, but one thing is sure--if you venture any
further than this chapter, your life will be changed. Among the pursuits of
craftsmen, none gives greater satisfaction than the creation of something that
delights its audience. And nothing on a computer is more delightful than a
well-crafted game. Follow this road and you will be hooked, we promise you.

This chapter introduces these subjects:

® The Theatrix C++ class library
® Objectives of a game library
© You, the game programmer
© What to expect from this book

2 C++ Games Programming

Theatrix
This book is about writing C++ programs that implement computer games to
run under MS-DOS. We provide and describe tools for game construction and
give explanations of how and when to use them. The underlying technology in
this approach is Theatrix, a C++ class library and toolkit that encapsulates the
functionality of computer games. A survey of the existing books on game
development reveals that most of them teach game programming at the
lowest, most primitive levels. Programmers learn about the details of
hardware and low-level application programming interfaces (APIs) that address
the video, sound, mouse, and keyboard. Then they write programs at those
levels, usually in C or assembly language. With Theatrix, programmers

| concentrate on the high-level components and logic of the game itself, leaving
| the details to the library’s hidden C++ implementation. This approach brings

game development into the modern software development environment of the
present. By using the C++ class mechanism and proven tools, the game
development process becomes structured and object-oriented and provides the
fastest way available to get a graphical computer game up and running.

In addition to being a class library, Theatrix includes a suite of game-
construction tools collected from the many shareware, freeware, and public
domain programs that are widely available. The class library and game-
building tools are included on the accompanying CD-ROM.! We provide
many examples of complete games that we developed by using only these
tools. The CD-ROM contains the C++ source code for all the games. In fact,
this book contains more demo games than any other game programming
book available today. The demos represent the kinds of games that you can
build, from the simplest to some complex examples. The CD-ROM contains
all the artwork in each of its forms throughout the game development cycle.
Everything you need to build the artwork is there: the fonts, conversion
programs, graphics construction programs, 3-D modelers, and sample image
files for scenery and sprites. All sound and music clips are there in each of
their forms, too.

I There is one exception. The POV-Ray ray-tracing program is not on the CD-ROM, butit is
easily obtained by download from the CompuServe Information Service. An agreement between
the tool's creators and another book publishing firm restricts us from distributing POV-Ray. We
do, however, describe how we used the program, include examples of the image source code and
imagefiles, and explain how you can get a copy of the program. Chapter 11 has details.

CHAPTER 1: Introduction

This book is more about the technology of game construction than it is
about game design. We discuss some of the components of game design, but
no book can cover all the possible ideas. A computer game is an expression of
someone's ideas. A jazz musician cannot tell someone else how to improvise
a riff. A painter cannot explain how to conceive a great picture. A writer
cannot just tell someone how to effectively describe in deathless prose a
particular scene. Those artists can teach only their craft, which consists of
the tools and techniques that underpin their art. It is through the practiced
application of that craft that the student’s inner ideas find their own
expression and art is formed. Any artist will tell you that you do not find true
artistic freedom in your own expressions until you master the medium.
Ultimately the quality of art is a collaboration of the artist's skill with a
medium and his or her ability to have unique ideas and the freedom to
express them. The ideas behind your games are, therefore, necessarily yours,
although we encourage you to use our examples to stimulate your
imagination. The freedom to express your ideas becomes yours when you
master the tools and techniques. This book gives you the tools, explains the
techniques, and teaches you how to use them.

Many people use and enjoy computer games. As long as there are
computers, there will be an active market for new games. By now we must
realize thatit is not possible to saturate the game market. Why not? Simply
this: First, many games cease to be interesting to the player once the player
has conquered the game. Second, every new game whets the player’s appetite.
There are some exceptions to the first property. Flight simulators, card
games, and 3-D maze games, for example, can offer infinite varieties of game
scenarios, so their novelty does not wear off so quickly. There is no exception
to the second property. Every new game makes the chronic player hunger for
more. That’s where you come in. An eager market awaits your games.

Objectives
A computer game's construction involves all the components of a theatrical
production. Later you learn to carry that metaphor forward through the use
of Theatrix, the C++ class hierarchy that implements it. This discussion
concentrates on the objectives of the Theatrix class library and its suite of
game-construction tools.

C++ Games Programming

Details: What to Know, What to Hide
In the old days, a computer game builder had to know and do it all. You
needed an intimate understanding of the computer's video, keyboard, mouse,
joystick, and sound-generation hardware—an imposing scope of knowledge,

to be sure, but not nearly as daunting then as it is today. The typical
computer game of yore was written to run on a particular suite of hardware;
the programmer had to master only one small set of configurations. Not only
do the PCs of today have various and incompatible hardware options, but
also their architectures are arcane and esoteric.

It is our position that programmers do not need an intimate
understanding of details of SVGA/XVGA memory and register architecture
in order to display images and text on a screen. Entire volumes have been
written on video architecture, and you can read them if you wish, but you
do not need to.

You do not need to know how to poll the mouse to see where its cursoris
or whether a click has occurred. The mouse architecture and interface are
standard now, andits interface involves a moderately complicated APL There
is an accepted reference work on using the mouse, but you do not need to
understand those details.

The same thing is true of the keyboard. There are many ways to read the
keyboard on a PC. You can intercept the keyboard interrupt vector and read
the keyboard input port. You can use calls into BIOS to poll and read
keystrokes. You can call the higher-level (and less efficient) MS-DOS console
input functions. You can use the standard C++ istream cin object, which
encapsulates the MS-DOS console input functions. Each of these techniques
represents a higher level of abstraction.

In the same vein, your understanding of image page swapping, animation,
sprite Z-ordering, and screen scrolling need not extend beyond knowing how
to make them work at the highest possible level of abstraction.

Levels of Abstraction
How much you must understand about low-level details of implementation
describes the level of abstraction at which you operate. You may view level
of abstraction as an imaginary line somewhere between the hardware at the
lowest level and the application problem being solved (in this case, the game

CHAPTER 1: Introduction

being developed) at the highest level. As the level of abstraction falls, it
exposes more details of implementation. Furthermore, the lower that line
gets, the more complex the details become. As the programmer, you must
understand everything from the highest level down to your particular,
personal lowest level of abstraction. It follows that the higher that line, the
fewer details you have to deal with and the more details you can forget about.

People who understand details of implementation have built detailed
functionality into libraries for others to use. By using those libraries, we raise
our level of abstraction. The higher our personal level of abstraction, the
fewer details we need to be concerned about. It is, therefore, advantageous to
use those libraries.

Consequently, an objective of Theatrix is to raise the game programmer’s
level of abstraction asfar as possible above the details of implementation.

Because no single programming metaphor suits every possible
programming need, a concomitant objective permits the programmer to use
interfaces that exist at several levels of abstraction.

Encapsulation
Theatrix encapsulates the details and interface of a game-construction
metaphor. Its objective is to provide an interface that hides the details of
video page management, video effects, animation, sound and music
generation, keyboard and mouse event processing, and message dispatching.
The implementation uses driverlibraries for video displays, the keyboard, the
mouse, and the sound card. The interface hides the details of those libraries
so that programmers can ignore them.

The Theatrix Metaphor
A metaphor is like a parable. It tells a story that uses an analogy to make a
point. The analogy associates something that we already understand with the
lesson that we are about to learn. The familiar helps to explain the
unfamiliar. One of Theatrix’s objectives is to provide an intuitive metaphor
through its class design. By associating game construction with more familiar
human activities, Theatrix helps programmers understand and remember
what the components are, how they relate to one another, and when it is
appropriate to use each one in the development of a particular game.

C++ Games Programming

The Theatrix game-construction metaphor equates the components of a

game with the participants in a theatrical production. There are directors and
players. The directors manage scenery and direct the actions of the players.
The players control their own movements and originate their own voices and
sound effects. There are conductors that generate music. This metaphor is

modeled in a class hierarchy. A game program derives game-specific classes

from the Theatrix classes and instantiates objects of those game-specific
classes. The objects register for and receive cues from each other and from
Theatrix—keystrokes, mouse events, timer events, and game-defined
messages.

Performance
For a gameto be taken seriously by the game-playing public, it must perform
well. Sluggish games will be rejected. It follows that a class library that
encapsulates game components must likewise perform well. We used
performance as the major criterion for the selection of our tools, and we kept
performance in the forefront throughout the development of the Theatrix
library.

A Comprehensive Toolkit
We wanted the Theatrix toolkit to be complete, comprehensive, and
obtainable. A game developer needs good tools for building graphics, sound
effects, music, and video. There are expensive commercial packages that
support those activities, and if you like them and can afford them, then by all
means use them. But we did not wantto limit the use of Theatrix to people
who could afford high-end tools. So we went in search of and found quite
acceptable tools that support all our requirements yet are within the budgets
of most independent developers. Many of these tools are free.

You can use the tools on the CD-ROM to test and experiment with the
example games, and you can use them to begin development of your own
games. We selected tools that are available and supported. In some cases, the
tools are free for you to use as is. Others are shareware, and, if you expect to
continue to use them, you should pay the nominal registration fees to their
authors. Still others are freely distributed for you to develop with, but you
must pay a nominal license to use them in game products that you
distribute.

CHAPTER 1: Introduction

Extensibility
We designed Theatrix to be extensible. If you want to incorporate otherfeatures into the library, you can derive from the existing classes. If youprefer to use different libraries for graphics, sound, and so on, you will findthose functions isolated in the class system and you can build or derive newclasses to replace the classes that use the supported libraries.

Who Are You?
Building a killer computer game involves many skills and much imagination.The best games employ the talents of conceptual designers who create thegame's premise and objectives, creative writers to write the scenarios anddesign the levels, graphics artists to design the scenery and sprites, musiciansto compose and record the score, sound technicians to create effective soundeffects, and computer programmers to write the code that brings together allof the above.

You may have these skills, but you are definitely a programmer, and thisbook assumes that you have a working knowledge of the C++ programminglanguage. We do not spend time explaining object-oriented programming,C++ class design, or C++ language constructs. If you are not familiar with C,you should read Al Stevens Teaches C, by one of the authors of this book. (Itshould be obvious which author.) If you do not know C++, we suggest that
you read Teach Yourself C++, 4th Edition, also by Al Stevens. We assume that
you understand how to compile and link programs and what an object libraryis. You are expected to understand the implications of source code headerfiles and C/C++ macros. Beyond that, all you need is a desire to understandand build computer games.

It is a lucky coincidence that building a computer game requires the skillsof a programmer. Programmers are the most inveterate of game players. We
enjoy challenges, puzzles, and complex constructions. The very nature of
programming involves building and solving the mysteries of the mostintricate of mazes, the computer program. We are qualified game buildersbecause we are inherent game players.

There are two possible reasons that you might be reading this book. Either
you are fascinated with computer games—Ilove them, fixate on them, can’t

8 C++ Games Programming

live without them—and have a white-hot burning desire to build games of

your very Own; Or you are just a programmer who sees all the money that the

game builders are making, and you want a piece of that action. If you fit into

the first category, you are the perfect candidate to read this book. If the

second category describes you better, then you are in for a happy awakening.

In addition to being rewarding, game developmentis pure fun. This subject

matter is compelling. Unless you are a completely boring person, which we

doubt very much, you will get into it, and we mean really into it.

What Do You Need?
To run the example games on the CD-ROM, all you need is a PC with a VGA

that supports the mode-X video mode (320 x 240 resolution with 256 colors).

|
To compile the source code and build your own games with Theatrix, you
need a DOS C++ compiler that supports ANSI runtime type information

(RTTI) additions. We developed this software with Borland C++ 4.5. You

cannot go wrong with that package.

Your Rights and Some Restrictions
The Theatrix source code is copyrighted by the authors. You may use it to

your heart's content to build games, and you may distribute those games in

any manner that you like. We hope you build cool games (that we can play,

too), and we hope that you make a million bucks doing it. We encourage you

to give copies of the Theatrix source code to anyone, but you may not sell it
unless you are selling a copy of this book along with it, which, we presume,

you acquired through legitimate channels. Under no circumstances may you
publish any part of the source code and representit as your own work.

The tools on the CD-ROM come from many vendors and have different

copyright and licensing restrictions. View the readme files for each tool to

see what your rights and responsibilities are.

The songs in the MIDI files are copyrighted. You are encouraged to play

them for your own entertainment, but please do not use them in programs
that you intend to publish commercially.

CHAPTER 1: Introduction

The example games are just that, examples. With a little practice you can
defeat any of them in short order. You may use them as launching pads for
your own game programs. The sprites and backgrounds are not particularly
exotic or original, so we do not mind if you use them. Your games, however,
should be unique and unlike any others. You should build your own sprites.
The POV-Ray sourcefiles (those that have the extensions .POV and .INC) are
hereby released to the public domain.

Getting Help
If you have questions about the Theatrix software, you can E-mail us on
CompuServe or the Internet. Al Stevens can be reached at astevens@ddj.com
or on CompuServe as 71101,1262, and Stan Trujillo is on CompuServe as
75233,1506.

For help with a particular tool from another vendor, see the
documentation file with that tool. Most of them can and will help you with
technical support if you have registered their product. Some of them
maintain a presence on CompuServe or the Internet and offer to answer
questions that way.

The Organization of This Book
This book describes the theories of game construction and provides tutorials,
examples, and reference material on the use of Theatrix and its tools. You
will not find much hardware detail about how sound is generated or how
video circuitry makes the phosphor pixels glow. The purpose ofclass libraries
such as Theatrix is to hide those details from those who do not need to know
them. The treatment of those subjects is, therefore, brief and superficial.

Chapter 2 is about game theory. It uses the history and evolution of
computer games to explain the components of games and the various kinds
of games that run on computers.

Chapter 3 provides brief descriptions of the technologies that games use.
Its purpose is to provide a common ground for later discussions and to ensure
that you understand enough of the PC’s architecture to build games that fit
within its operating limits.

10 C++ Games Programming

Chapter 4 discusses the technical aspects of game-building strategies. This
is where you learn to assemble the game components that are outside the
program code. You learn to create scenery using techniques that depend on
whether you want photographic realism or an arcade appearance. You learn
to design and build animated sequences for the action in your game. This
chapter describes how to build sound effects and the game’s musicalscore.

Chapter5 is an introduction to Theatrix, the C++ class library with which
you integrate the game’s components into a running program. This chapter
gives an overview of the class hierarchy and explains the theatrical
production metaphor.

Chapter 6 is the Theatrix user’s guide. It contains operating instructions
for the utility programs.

Chapter 7 is the Theatrix reference manual, which documents the public
interfaces of the C++ classes in the Theatrix class library.

Chapter 8 is the Theatrix technical specifications, which describe the
operation of the software and the formats for the various data library files
that game programs use.

Chapter 9 describes the Theatrix development environment. The approach
taken here organizes the games into projects with makefiles that build every
game component automatically. The chapter includes a discussion on using a
small network to coordinate the efforts of a game-development team and to
share resources.

Chapter 10 explains each of the example game programs that are included
on the CD-ROM. This chapter is where you learn to use Theatrix, because it
teaches, by example, each of the features that the library supports. The
discussion addresses the operation of the games and the code and data files
that implement them.

Chapter 11 describes each of the tools in the Theatrix toolkit, explaining
when and how you use each one of themin the development of a game.

Appendix A explains what is on the CD-ROM, how you install the
programs, data files, and source code on your PC, how to run the games, and
how you can modify and recompile the software.

Appendix B lists the C++ header files for the Theatrix class library.

Game Theory

“Final kiss at seven.”
Guy Tibbets

This chapter is your introduction to computer games in general. We discuss
some of the early computer games to provide a historical perspective on how
they started and to illustrate how the evolution of games reflects advances in
computing power. Then we address the factors that go into the design and
development of a contemporary computer game.

You will read about these subjects:

© Early computer games
© Different kinds of games
© The components of a computer game
©& The issues of violence and programming standards

11

12 C++ Games Programming

Early Computer Games
In the early 1960s, one of the authors of this book played his first computer
game. The computer was an IBM 1410, and it belonged to the U.S.
government. I (Stevens) was a civilian programmer, and an Air Force sergeant
named Guy Tibbets was the operator. The IBM 1410 was a character-based
machine with 100,000 characters of memory and a Selectric-ball typewriter
console device. The game was Tibbets’s idea. We would fill memory with the
NOP instruction (which consumed an instruction fetch and execute cycle
but did nothing), press the Reset button to position the instruction pointer at
address zero, and then press the Start and Stop buttons in rapid succession.
The console displayed the instruction pointer address where the stop
occurred. Our game was to see who could stop the computer faster, as
measured by the lower stop address. I could never beat Tibbets. It was a
simple and mindless exercise, but it passed the time on the night shift when
we ran out of jokes to tell.

The point of this story is twofold. First, given the opportunity, most
computer users will use a computer to have fun—when the General isn’t
around. Second, the manner in which a computer can entertain us is usually
a function of its processing power. That 1410, which filled a room, was
actually slow enough that a human being could move a hand from one
button to anotherin less time than it took the computer to execute 100,000
NOP instructions. Thus the limitations of the 1410 computer permitted the
game that Tibbets! contrived.

Chess
Computer games predate that early experience with a 1410. In 1959, an MIT
mathematics professor named John McCarthy wrote a chess-playing program
on the school’s IBM 704 computer. Chess programs are common today—you
can buy small microprocessor-based chess machines at Radio Shack for a
song—but at the time the program was a monumental achievement. It gave
credibility to a new discipline called artificial intelligence, one that was

ITibbets loved mind puzzles of any kind. He devised anagrams by scrambling the letters of your
name with an insulting comment. He'd give you the anagram and smirk while you tried to figure
out what it meant. Mine was the quote at the top of this chapter, which unscrambles to “Al
Stevens is a fink.” Tibbets also built a fully functioning merry-go-round from scratch outof junk
parts for the neighborhood children.I often wonder what became of him.

CHAPTER 2: Game Theory

generally regarded among the knowledgeable as showing little promise.
Computer game construction continued for several years at MIT’s Artificial
Intelligence (Al) Laboratory, where students had relatively unrestricted and
unmonitored access to government-funded computers.

Spacewar
In 1961, Steve Russell, one of McCarthy's students, was given access to the
school’s DEC PDP-1, which had an oscilloscope display device that you could
control from a program—an early video terminal. Russell set about to create
the first video game, an outer-space confrontation between two players. Each
player controlled the movements and weaponry of a rocket ship by pressing
switches on the computer’s front panel console. The point of the game was to
destroy the opponent’s ship by firing a torpedo while at the same time
avoiding the opponent’s torpedoes.

The game survived for years, with improvements added by the
programmers at the Al lab. One of those improvements was the invention of
the first computer joystick, created from scrap parts by the programmers
because computer console switches were difficult to use to fly spacecraft and
fire torpedoes.

Life

The game of Life was invented by British mathematician John Conway and
was published in Scientific American in 1970. Life simulates a universe of
neighboring cells. Each cell, identified by its x/y address in a coordinate
system, may have one of two possible states. The cell is either populated or
unpopulated and is surrounded by eight neighboring cells. The game consists
of a sequence of generations. Each generation examines each cell to see (1)

whether it is populated and (2) how many populated neighbors it has. A
neighbor is oneof the eight adjacent cells in the 3 x 3 array of nine in which
the target cell is the center cell. If an unpopulated cell has a certain number
of populated neighbors, the cell becomes populated in the next generation.
Conversely, if a populated cell has too few or too many neighbors, its
population expires in the next generation. A cell is born if there are enough
neighbors to spawn it and dies if there are either too few neighbors to support
it or too many neighbors with which it must share resources. Some
implementations of Life use screen character positions to represent cells, and

13

14 C++ Games Programming

the universe of cells is limited to the number of screen character positions.
Others use dense graphical screens on which to display the simulation.

The game of Life simulates the evolution of generations. To play the game,
you create the universe by specifying which cells are initially populated.
Then you run the evolution and observe how each generation modifies the
pattern of populated cells. The universe often takes on interesting
symmetrical patterns as the generations pass. Some patterns result in a
totally expired universe after a few generations. Other patterns result in a
stable universe. Still other patterns endlessly repeat a cycle of births and
deaths. A culture of Life players blossomed in the 1970s, and its members
often published and shared interesting starting patterns.

As with Spacewar, Life was given its own life at the MIT AI lab in the
early 1970s. For a time, Life dominated the concentration and lives of
researchers and students, who programmed Life to run on the lab’s PDP-6 and
spent most of their time experimenting with Life patterns.

The executable and source code for a DOS text-mode version of Life is
included on the CD-ROM that accompanies this book. See Michael Abrash’s
The Zen of Code Optimization (listed in the Bibliography) for a discussion of
Life as a study in how to optimize computer simulations.

Adventure
Adventure was developed in the early 1970s at the Stanford AI Laboratory by
Will Crowther and Donald Woods. Adventure uses keyboard input and
console output to establish a dialogue with the human player. Adventure
simulates a world of caves, dragons, dwarfs, and so on. The game tells the
player where the player is located and what the surroundings hold. For
example, when you first begin to play, you see this message on the console:

Somewhere nearby is Colossal Cave, where others have found fortunes in
treasure and gold, though it is rumored that some who enter are never seen
again. Magic is said to work in the cave. I will be your eyes and hands.
Direct me with commands of 1 or 2 words. (Should you get stuck, type "help"
for some general hints. For information on how to end your adventure, etc.,
type "info".)

You are standing at the end of a road before a small brick building. Around
you is a forest. A small stream flows out of the building and down a gully.
>

CHAPTER 2: Game Theory 15

From the prompt you type terse commands and directions. Following each
command, the program tells you where you are. For example, at the first
prompt you can type enter or go in and the next message appears:

You're inside building.

There are some keys on the ground here.
There is a shiny brass lamp nearby.
There is tasty food here.
There is a bottle of water here.
>

Subsequent commands retrieve items and navigate you through the world of
Adventure. It is a compelling and addictive game, particularly until you have
mastered it and retrieved all the treasures in Colossal Cave.

Adventure is typical of the first generation of action games, using text
displays and the player's keyboard commands. Joysticks were not widely
available then, the mouse had not been invented, and computer graphics
were too slow and too low in resolution to display the kind of images that
Crowther and Woods described with words. If Adventure were being
developed today, it would be very different than it was twenty-five years ago.

The CD-ROM with this book includes the executables and source code of
Adventure as ported to C to run on a PC. The original program was written
in FORTRAN and displayed all its messages in uppercase, another example of
how the limits of computers influenced their games.

Contemporary Games
Early computer games had a certain charm and appeal that contemporary
games lack. Because of the limitations of the hardware, early games used text
mode or very primitive graphics. As a consequence, a principal ingredient in
games was the player's imagination. The experience is akin to that of reading
a book; the reader’s mind provides the visual and audible details based on the
writer’s descriptions. Another analogy compares radio drama (for those of you
who remember it) to that of movies and television. The radio listener
supplied the scenery, the action, and faces for the actors. The medium
provided only voices, sound effects, and background musicto tell its story.

16 C++ Games Programming

With vast improvements in display, controller, and sound technology,
game development has advanced far beyond the simple interfaces from the
early days, and the current crop of games reflects those improvements.
Typical of modern entertainment, today’s games emphasize action
represented by the visual and audible, leaving very little of those elements to
the player's imagination. As a result, players concentrate more on honing
motor skills or using deductive reasoning to unearth the clues and beat the
game than they do on visualizing the scenery and characters.

Contemporary games come in many varieties; four common types are
simulators, real-time 3-D mazes, static photo-realistic displays, and arcade-
style animated sprite games.

Simulators
Not long after IBM introduced the PC in 1981, Microsoft began selling Flight
Simulator, a program thatit acquired from a company called SubLogic. Flight
Simulator was a milestone program for two reasons. First, it was a realistic
simulation of the cockpit of a small airplane in which the player-pilot could
execute takeoffs, landings, and flight maneuvers. Second, the program
became the benchmark for compatibility when the PC clone market was
born. If a would-be PC-compatible computer could run Flight Simulator,
chances were good that it would run anything that a true blue PC could run.

The first Flight Simulator was truly impressive. It ran in a 4.77-MHz 8088
machine with no hard disk and 512K of internal memory. The Color
Graphics Adapter display had a monochrome graphics resolution of 640 by
200 pixels. By today’s standards, the original PC was tiny and underpowered.
Yet Flight Simulator managed to display a full instrument panel with moving
needles and changing digits; a pilot’s view through the windshield that
rendered the outside world in real time; a computer model of the terrain, a
few buildings, and an airport in Chicago; and engine sounds through the PC’s

tiny speaker.
Flight Simulator has kept pace with advances in hardware. The latest

version (5.0) uses a photo-realistic instrument panel, fractal scenery, and
enhanced visuals of some scenery that maps digitized aerial photography over
the terrain renderings. It also requires a fast processor and many megabtyes of
hard disk space.

CHAPTER 2: Game Theory

There are many other flight simulators for the PC. Most of them
emphasize air combat missions, although a few, such as Chuck Yeager’s
Advanced Flight Trainer 2, teach the elements of flight rather than combat.
Others include simulators of bombers, fighters, helicopters, ultralights,
gliders, biplanes, and even the space shuttle. An air traffic control simulator
allows Flight Simulator pilots on networks to fly in controlled airspace. One
player is the air traffic controller; the others are the pilots.

Simulators are now available for race cars, submarines, tanks, and every
imaginable kind of spacecraft, including the Starship Enterprise. They all
have one thing in common. They render their scenery in real time. The
program maintains a computer model of the world in which the simulated
object moves. That model describes the terrain and features such as
buildings, bodies of water, towers, statues, trees, pylons, and so on. As the
simulated object moves through this world, the program uses the model to
render each frame of the player's view as the view changes.

This book is not about writing simulators, although you could use the
Theatrix class library to implement one. Two books in the Bibliography
address flight simulator technology and construction in detail. They are
Flights of Fantasy and Taking Flight.

3-D Mazes: Doom
In the early 1990's, Apogee Software introduced a shareware game called
Wolfenstein. In the game, the player is a hero of sorts who wanders through a
3-D maze of corridors and doors and does battle with Nazi types who appear
at random from inside doorways and around corners and who shoot at the
hero. The game and its display techniques launched a new generation of
games culminating with Doom, the most successful shareware game ever
produced. Doom was developed by the programmers who wrote Wolfenstein
after they split off from Apogee. Doom originated as a DOS shareware game.

Wolfenstein, Doom, Blake Stone, Descent, and other 3-D maze games use
a display software technology called ray casting, which is a way to rapidly
compute successive frames of complex scenery in real time. The Theatrix
library does not encapsulate the functions of ray casting, and this book is not
about developing 3-D maze games. Two books in the Bibliography
specifically address game development with ray casting. They are Tricks of
the Game Programming Gurus and Gardens of Imagination.

17

18 C++ Games Programming

Static Displays: Myst
Myst is completely different from Doom. Although the two games represent
different game development strategies, they are also the two most successful
of contemporary computer games. Myst was originally a Macintosh game
that was later ported to Windows. The Windows version is by far the more
popular. A sequel to the original game is now under development, and it
promises to be a runaway best seller.

Myst plays out its scenario beginning on an island where the player moves
about and gathers information. From that information the player learns to
travel to and return from other islands where the player gathers more clues.
Gradually the clues combine to reveal the purpose and eventual completion
of the game. At first, players do not know the purpose—or even the
premise—of the game. The magic of Myst is in the way the mystery unravels
itself as players move around in the beautiful and mystical worlds that the
game provides.

The scenery in Myst consists mostly of static displays. The player moves
about by clicking the mouse on points on the screen. The program changes
the player's view accordingly. These views are rendered in advance by a
technique known as ray tracing, which provides photo-realistic images of
scenes represented in a computer model.

Myst frequently uses small inserts of video clips superimposed over the
static displays. Some of the video clips are actual video images created with a
video camera. Others are constructed from animated sequences of scenes
rendered in advance with ray tracing and compiled into video files that the
computer can play back.

Sound effects and music are an integral part of Myst. Many of the clues
depend on sound effects. The music provides no clues or information, but
greatly enhances the visual effects of the game by adding to the mood.

The Theatrix library supports the development of games such as Myst.
The toolkit includes 3-D modeling and ray tracing tools, and the library
supports static displays, selective mouse control, coordinated sound effects,
video clips, and music.

Sprites and Backgrounds
Games such as Putt-Putt and Leisure Suit Larry may be at opposite ends of
the family values spectrum, but they use similar animation techniques. A

CHAPTER 2: Game Theory

static background provides the scenery, and small animated characters, called
sprites, move around the scene and provide the action. The player controls
the game with the keyboard and mouse. When the scene changes, the game
displays a new background.

Some games use scrolling backgrounds. As the sprites move around, the
background scrolls to keep the sprites in view. This technique allows the
game to seem to cover more territory without changing scenes. Arcade games
such as Super Mario Brothers use scrolling backgrounds.

Theatrix supports animated sprites and both static and scrolling
backgrounds.

Your Game
All the discussions until now have been about games that other people have
developed. Now it’s time to consider your game, and that’s what we'll
concentrate on from this point forward. This chapter addresses the theory
behind the components of a PC game and the options you have when you
build one. Chapter 3 is about the technology, and Chapter 4 is about the
strategies that you apply in building your game.

After you have decided to write the next killer game and sweep the
market, you have to build it. To do that, you start with the game’s purpose
(other than to make you a pile of money, of course). Whatis its point? What
are the objectives? What is expected of the player? What does the game itself
provide?

Develop a theme. Will your players kill or be killed? Or will they explore,
collecting treasures and gathering clues? Must they manipulate a vehicle?
How about weapons? Will there be one player at a time or more? Will the
game support multiple players at a single PC session, or is a network
involved?

Develop a scenario. Sketch out the scenes and the game's progress. Identify
items that appear in each of the scenes and their consequence to the player.

Who are the players going to be? Small children? Teenagers? Adults?
Senior citizens? Does the game make assumptions about the players’ cultural
or ethnic backgrounds?

Will music play a role? Sound effects? Video clips?

19

20 C++ Games Programming

How will the player control the game? With the keyboard? With the
mouse? With a joystick?

Will the scenery and characters be realistic? Surrealistic? Have an outer-
space look? Be pastoral? Have an arcade look?

All these decisions help you select the technique for presenting the game
and the tools that you need. The example games in this book have all the
scenery and use all the features just mentioned—music, sound effects, video
clips, mouse, joystick. You won't find all the elements in every game, but
everything just discussed exists in one or more of the example games.

Scenery
Designing scenery is a major part of game design, but it’s something that
doesn’t call on your programming skills at all. Whether you use a paint
program to construct a scene or render a 3-D model into a ray-traced, photo-
realistic image, the result is a screen full of colored pixels that the program
copies into video memory. When you use a class library such as Theatrix, all
you do in the program is provide the name of the file. All the real work is
done in the construction of the scene.

There might be parts of the scenery screen that are significant to the
program. If a mouse click has meaning on a particular feature, you must
record the pixel coordinates of the click boundaries. You will need to
eventually plug these values into the program. If the scene includes a door
that opens and closes, you need to record the coordinates that define the
door’s rectangle. If sprites move about in the scene, you need to map a path of
screen coordinates that represent the movement.

Characters
The characters in a game—the sprites—are like the actors in a play. They
move about among the scenery, speak lines, and make things happen.
Through animation, sprites provide the action in the game.

Notall sprites represent living creatures. A door that opens and closes can
be a sprite. So can a table that slides across the floor. Anything that moves
against the static background scenery is a sprite.

Animation of a sprite involves rendering in advance all the frames
necessary to represent motion. A walking sprite needs frames to display the

CHAPTER 2: Game Theory 21

character in each of the configurations of steps. If the character moves toward
and away from the player’s view of the scene, there must be frames of

different sizes to suggest perspective. Sometimes you render these frames in
advance. Other times you have one set of frames for each motion and

compute and render the size at runtime.

Video Clips
Not all moving things in a game are implemented as sprites. Sometimes you
use video clips. These clips can be animated sequences built from 3-D
models or individually painted frames. They can also be real video sequences
captured onto disk from a video input card connected to a video camera or

VCR. There are standard formats for these video files, and Theatrix supports
their display.

Myst uses many video clips. The scenes where the characters speak from
behind books in the library are video clips. The porthole view of flying into
the island of another world in a spaceship is a video sequence made by many
renderings of a 3-D model of that flight.

Sound and Music
Sound effects and music add an extra dimension to a game. The PC has a

programmable speaker, but its small bandwidth limits its use for effective
sound generation. However, most game players have add-on sound boards in
their PCs. These boards are capable of producing high-quality sound effects

and synthesized or sampled music. By using these sound boards, even games
that do not depend on sound to communicate with the player are more fun to
play. If the game slams a dooror fires a shotgun, the sound adds to the effect.

Music, as played from MIDIfiles, adds mood and texture to a scene.

Menus
If there is more than one place for a player to start when playing a game or if

the player can make choices at strategic points in the game, a menu is a good

way to present the choices and get the selection. A menu showsa list of the
possible selections and provides a way for the player to make a choice. Every

computer user is accustomed to menus. Game programmers have the
freedom to use any menu technique they like. Unlike other development
environments, Theatrix does not impose a standard for menus on the game

22 C++ Games Programming

programmer. (See “What About Standards” later in this chapter.) For that
reason, there is no menu class in the library. You should design a menu toreflect the atmosphere that your game presents and use the Theatrix
paradigm to display the menu and retrieve the player's choices. The menushould be simple and easy to use. Some of the example games on the
included CD-ROM use menus, and you can use these examples as a guide.

Options
A game's options can be as simple as allowing the player to specify a skill
level or as complex as letting the player modify the game itself. Most action
games allow you to join in as a rookie or trainee and then raise your skill
level as you become more experienced. This approach allows players to getinto and enjoy the game well before they are proficient with it. If you do not
provide such an option in a difficult action game, then either your gameisnot so difficult after all—it is too easy, in fact—or players will give up in
frustration before they have discovered all that the game has to offer. This
concept does not apply so much to passive games of discovery such as Myst,where players can take their time. It is more important in games—such as
Doom—that require the player to apply refined motor skills and fast reflexes
to survive.

As with menus, the way that you display options and get their values
should look as if it belongs to the game. The example programs on the
included CD-ROM show you ways to do this.

Saving Games in Progress
If a game is complex and takes a while to complete, you should provide the
ability to save and restore the game's status. Theres not much that a library
can add to what Standard C++ already provides for reading and writing disk
files, but you should understand the concept.

Saving a game’s progress consists of recording a number of statusindicators and values into a disk file that the game can read during the
initialization of a subsequent session. You should identify each of these items
when you design the game's scenario to facilitate designing the save and
restore software logic. The current status of a game consists of the progressthat the player has made and the options under which the game is running, If
the game has successive levels, the current level is one item of progress. If

CHAPTER 2: Game Theory

there are foes that have been vanquished, that fact should be recorded for
each one. If items have been moved or bodies are strewn about, the location
and identity of each one is saved. Any persistent data value that influences
how the computer plays the game or that affects the player’s location, skill,
or progress should be saved.

When the player shuts down without having won or lost, the game
program should ask whether the player wants to save the game. If so, the
game program writes the status data into a disk file.

When the game beginsat another time, the player must have the option to
restore a previous game, in which case the game loads the status data into
memory and proceeds from the last point of departure.

Suppose more than one person plays the game at different times but on the
same computer. The game program needs to tell them apart. There are two
ways to do this. One way is to name each saved game data file. When saving
the game, the player specifies the saved game’s name. That nameis used later
to retrieve the game. Another way is to provide a sign-on log. When a player
starts the game, the program displaysa list of players and allows a player to
select from the list or to sign on as a new playerto be added to the list.

Multiple Players
There are two ways to support multiple players in a game. One way is to let
both players have their own controllers and use the same computer. Such
games usually use a joystick, because sharing a keyboard or mouse can be
awkward. The other way is to connect two or more computers in a network.
The computers all run the game in a multiple-player environment, and they
communicate by exchanging packets across the network.

The network can be as simple as two computers connected with a serial
cable or by modem across telephone lines. Although many multiple-player
games run on local and wide area networks, the demands of a game are small.
The programs exchange small packets about such things as where the sprites
are and whois shooting in what direction.

Keeping Score
If a game has scores or levels of achievement, then the game should offer the
player an opportunity to record the results. A typical game displays a list of

23

24 C++ Games Programming

the highest scores and scoremakers, adding the latest score to the list if it
ranks among the highest. This list gives new players an objective to aim for.

Simulators often maintain and record levels of player achievement. A pilot
or driver can accumulate hours of experience and advanced ratings by
successfully executing prescribed maneuvers, such as cross-country trips,
instrument approaches, bombing raids, dogfights, and so on.

A game that records the progress of several players can use the same disk
file to record the players’ individual scores.

The Question of Sex and Violence
When people gather to discuss the issue of sex and violence in
entertainment media, you have to watch for outside agendas. It seems that
the only people whose opinions can be trusted are those who have no
personal stake in the outcome, and no one seems to fit that description.
Politicians posture for votes. The entertainment industry holds forth for
profits. Parents worry about wrong influences on their children. Civil
libertarians guard our rights to free speech and expression. It seems that
everyone has a stake in sex and violence.

Leisure Suit Larry depicts a couple of cute sprites having sex—under the
covers, to be sure, but there is no question about what they are doing. The
game may have more sexually oriented action than that one scene, but we
never got much further with it.

Doom is violent. It depicts death and carnage, complete with screams,
blood, and bodies scattered all over the landscape. The player does most of
the killing, selecting weapons from a deadly and varied arsenal.

Most flight simulators involve bombing or shooting down the enemy,
who, it must be presumed, are human beings.

Myst has no active violence, but it tells the story of long-ago acts when
beings did harm to one another. In one scene, a skeletonis seen hanging from
a gallows, a remnant of earlier, unseen atrocities.

CHAPTER 2: Game Theory

Descent takes a different approach to its violence. The player shoots down
unmanned drones that are themselves programmed to mindlessly shoot
down the player. The player never actually kills anything that is alive.

Some arcade games depict neo-gladiators tearing off one another's arms,
legs, and heads. These games have come under public scrutiny, and a cry has
gone up for some form of industry self-regulation and a ratings system.

Despite what you hear during political campaigns and on talk shows, no
empirical evidence exists to support the position that children receive
negative influences from seeing improper behavior in entertainment media.
That is only emotional opinion. The absence of such evidence does not mean
that the opinions are without merit, however, only that they are unproven by
scientific means.

You must decide how you feel about this issue, because you have the
opportunity to add to and influence this culture in one way or another. One
thing is clear: Thereis a strong market for games that allow the playerto fire
weapons and vanquish the enemy. You may draw whatever conclusions you
wish about a society that desires and seeks out such a release. If you think
that you know what's right and acceptable, then you have found the answer
for yourself, and that’s what matters.

Until there are government regulations to control what people can publish
in a computer game (which is inevitable, we fear), everyone has to exercise
good taste and judgment. The market should guide us. If programmers make
the right decisions and the games are good ones and are properly marketed,
people will use and praise them. If, on the other hand, someone puts out an
obvious piece of trash where evil nuns slaughter little fuzzy puppies (we hope
we haven’t given anyone an idea here) or something equally stupid and
gratuitous, that work will be rejected and the programmer can move on to
other pursuits.

What about Standards?
Every aspect of programming involves standards. There are standards for
writing code, for documentation, and most particularly for the user interface.

25

26 C++ Games Programming

When DOS reigned, applications prided themselves on their proprietary
user interfaces. If you copied the menu and data entry screens of another
application, the chances were good that you would find yourself the object
of a look-and-feel lawsuit.2 Now that Windows prevails, applications pride
themselves on their common user interface, and they all look and feel
alike. Go figure.

Should all games look and feel alike? We don’t think so, not even if they
are Windows games. Each of the example games on the included CD-ROM
has its own unique interface. Some have menus, and others have options
screens. Their screens are designed to consistently maintain the aura that the
game supports. Some of the games use the mouse, others use the keyboard,
and still others use both. They do not necessarily use those things in exactly
the same ways.

The charm of games such as Doom and Myst is that their user interfaces
reflect the underlying theme of the games and are unique. Their menus and
options screens sustain the overall theme of the particular game. Command
structures are designed to facilitate effective play based on how the game
works rather than on a rigid definition of a standard way to do things.

Imagine playing Myst if you had to pop down menus and use dialog boxes
to rotate the tower in the Library and view constellations in the Planetarium.

Imagine Doom with radio buttons to set the level of play and command
buttons to fire a weapon.

It’s a game, folks. It’s supposed to be fun. It’s for after hours. Leave the
stuffy and constraining standards to those who wear ties and socks and who
write and use commercial applications with databases, reports, and scheduled
processing cycles. That description may fit you during your day gig, but when
you are off the clock, you can forget the standards and have some fun.

2In a famous litigation, Lotus sued Borland because Quattro Pro’s DOS user interface resembled
that of Lotus 1-2-3 for DOS. It has been reported that during that period, Philippe Kahn, then
Borland’s CEO, greeted Mitch Kapur, CEO of Lotus, in a restaurant by saying, “Good morning,
Mitch. How do you look and feel today?”

PC Game
Technology

“Go play with the town you have built of blocks...”
Stephen Vincent Benet

This chapter deals with the hardware and software technologies that
underpin a computer game. We discuss hardware architecture, multimedia
techniques, and software issues. We also address the creative aspects that
apply to generating the multimedia components of a computer game.

You will learn about the following subjects:

o

©

0
90

9
Events and messages
Video

Graphics
Sound
Music
Game controllers

27

28 C++ Games Programming

Why Learn about Hardware?
Programmers who build conventional computer applications can usually
concentrate on the problem and ignore the hardware. The operating system
insulates the programmers from such details. Lucky them. Game
programmers, on the other hand, have always had hardware to contend with.
To a large extent, Theatrix hides those details, and it is possible to write a
game program without knowing very much about hardware. It always helps,
however, to understand how things work. In the case of subjects such as the
video palette, you need to generally understand the hardware’s operations so
that you can recognize their consequences and deal with them.

This chapter provides only an overview of hardware architectural issues so
that you understand them well enough to write effective games. Entire books
have been written about PC video architecture, programming the mouse,
MIDI music cards, and so on. Although you do not need to understand all the
technical complexities of these devices to develop a Theatrix game, you
might find them interesting. In that case, refer to the Bibliography for a list of
books on these subjects.

Event-Driven, Message-Based Programming
Theatrix implements an event-driven, message-based programming model.
The model vaguely resembles the way that Windows programs are written,
although the Theatrix message system is not nearly as complex as the one
that Windows programmers have to learn.

A Theatrix game program instantiates its game objects, registers for event
messages, and then turns everything over to Theatrix. The system then
watches for events to occur, intercepts them when they do, and dispatches
event messages to the registered functions.

Events are things that happen outside of and asynchronous to the game
program. Clock ticks, keystrokes, mouse movements, mouse clicks,
joystick motion, joystick button presses, and receptions of network packets
are all events.

Messages are function calls that the system makes to registered functions
of the game program. Messages report events to the game program. The game

CHAPTER 3: PC Game Technology 29

program gets only those messages for which it has registered. A message
registration specifies the function for Theatrix to call when the event occurs.

Game programs may specify internal application-dependent messages, too.
One function registers for the message. Some other function in the game
sends the message. Theatrix takes care of dispatching the message to the
registered function. In this case, the event is whatever the sending and
receiving functions agree that it is. Using messages loosens the functional
coupling between program components.

Game Controllers
The player controls the game with input from controlling devices. In arcade
games, unique devices designed for the particular game are installed on the
arcade machine. PCs, being general-purpose computers able to play many
different games, have common keyboard and mouse devices that were
designed for typing, menu selection, and other such mundane computing
tasks. Games must use those devices as controllers. There is one standard
device in the PC architecture that is a concession to game players—one that
seems to be used for little else—and that deviceis the joystick. Theatrix also
permits a game to be controlled remotely through a serial port.

Keyboard
The keyboard has been used for virtually every kind of game control. Many
champion Doom players prefer the keyboard to the joystick for moving
through the maze and firing weapons. Flight simulators always include
keyboard commands to control pitch, roll, and yaw in case the pilot's
computer does not have a joystick. Real-life airplane pilots are often surprised
when PC simulator pilots become proficient at flying a simulator by using
the keyboard instead of more intuitive and realistic flight controls.

Action games often require the coordinated use of different sets of keys at
the same time. You might be changing direction with an arrow key to avoid
being shot while at the same time firing a weapon. BIOS and DOS keyboard
input functions cannot report such keypress combinations. Sensing them
requires a low-level device handler that intercepts the keyboard hardware
interrupt vector and reads the keyboard data port.

30 C++ Games Programming

Unlike a typical video terminal, the PC keyboard device is not an ASCII

input device. Pressing a key interrupts the running program. An interrupt
service routine executes and reads the keyboard data port, which delivers a
keystroke scan code. Each key on the keyboard has a unique scan code; the
code is unlike the key’s corresponding ASCII value. The BIOS function that
services the keyboard interrupt translates those keystroke combinations
into the ASCII value that your C++ program reads when it extracts from the
cin object.

The event-driven, message-based programming model used by Theatrix
permits elements of the game to register functions with keyboard events.
When a registered key is pressed, the system calls the game program's
function. There are two ways to register. You can register for a regular
ASCII keypress such as the one you get from a BIOS function call, or you
can register for an asynchronous keypress, which calls your function as
soon as the registered key is pressed irrespective of other key presses at the
same time.

Mouse
The mouse is an asynchronous pointing device. When enabled, the mouse
driver displays a cursor on the screen. The cursor points to a screen position
related to the smallest unit of resolution in the current video mode. For
example, if the program uses Mode X, the mouse’s cursor points to positions
from 0 to 319 in the X axis and 0 to 239 in the Y axis.

The cursor’s screen position is coincidental to the mouse’s location on
your desktop. You can pick up the mouse and move it, and the cursor does
not move. You need to roll the mouse on a flat surface to move the cursor
on the screen.

A program can turn the mouse cursor display on and off, specify the
graphics configuration of the mouse cursor, set and read the current mouse
cursor coordinates, and read the setting of the mouse buttons. Mouse cursor
movements occur independently of the running program. When the user
moves the mouse, the mouse driver moves the cursor. The driver saves what
was displayed under the mouse cursor so that it can restore the screen before
moving the cursor to another position.

A game program needs to be aware of the mouse cursor. The program
should turn the mouse cursor display off during writes to the screen in

CHAPTER 3: PC Game Technology

graphics modes. Otherwise the program’s write could erase all or part of the
mouse cursor. Also, the mouse driver’s cursor-save video buffer would not be
current if the application program wrote to the current mouse cursor
position. Ignoring the mouse during typical animation sequences leaves
mouse trails all over the screen. Fortunately, you do not have to worry about
these details. Theatrix takes care of mouse displays for the game program by
turning the cursor display off and on at strategic times when writing to video
memory.

A Theatrix game program can register for mouse events in several ways. It
can specify functions to be called when the mouse moves and when the
player clicks a mouse button. The functions receive as parameters the
current mouse position at the time of the event. By using these registered
functions, a program can use the mouse to select menu items, press game
buttons, drag game parts around the screen, and so on.

The game program can provide a table of screen regions with associated
mouse cursor shapes. This table tells Theatrix how to change the cursor’s
appearance depending on where the mouse cursor is positioned. You might
use arrow cursors to indicate that a click in that region changes direction, a
finger cursor to indicate that a button can be pressed, and an open hand
cursor to indicate that an object can be picked up.

The table can also include game-dependent functions for Theatrix to call if
the user clicks the mouse while the cursor is in the associated region. These
table entries allow the game to take actions that depend on where the mouse
was when the user clicked. For example, you might open a door, pick up an
object, move closer to a scene, or turn to the right or left based on what item
in the display you are touching with the mouse when you click the button.

Joystick
The standard PC joystick is a poor relation to the high-resolution joystick
devices found in high-end CAD workstations of 10-plus years ago. The PC
joystick is a crude, low-resolution, mostly inaccurate device that is used in
games mainly for direction and motion control.

Flight simulators use the joystick for attitude control because its function
resembles that of the control stick in older aircraft and modern jet fighters.
The name joystick comes from aviation. It is what World War I and
barnstorming pilots called the control lever in their craft. Some PC joystick

31

32 C++ Games Programming

devices resemble the control wheel in modern airplanes and are intended for
more realistic flight simulation, although professional pilots often complain
that PC joysticks are not sensitive enough to simulate true flight conditions.

How well a program works with the joystick depends on how well the
programmer understands the vagaries of the device. The shareware version of
Doom uses the joystick to move the player through the maze. Either those
programmers did not understand the joystick or they did not care much for it
as a controlling device. They built in a wide dead spot at the center of the
stick’s travel, apparently overcompensating for the flutter behavior that some
joysticks display. By the time you get the stick outside the dead spot, the
programmed degree of motion is too fast and you overshoot where you
intended to point. Perhaps that is why serious Doom players (if there could
be such a thing) prefer the keyboard. Other 3-D maze programs make better
use of the joystick.

A program can sense four things from the joystick’s input: the distance
from position zero at the left to a maximum rightmost value on the X axis,
the distance from zero at the top to a maximum bottommost value on the Y
axis, whether button 1 is pressed, and whether button 2 is pressed. The X/Y
readings range from a possible zero/zero at the upper left to device-dependent
maximum values at the lower right. Unlike with the mouse, these
coordinates are unrelated to the screen resolution and do not change when
the video mode changes.

Because of the inherent mechanical and electrical instability of the
joystick design, its readings and sensitivity vary from device to device.
Processor speed is one of the variables.

The crude A/D converter logic in the standard joystick uses a simple RC
circuit that discharges two capacitors, one for each axis, at rates that get
slower the farther away from upper left the stick gets. The stick’s position
adjusts two potentiometers, one for each axis. The potentiometers supply a
variable resistance that controls the rate of discharge of the capacitors. The
circuit is normally charged. The discharge begins when the program writes
any value to the joystick port. The write operation closes a switch and
grounds the positive side of the capacitor, which is connected to an inverter
gate that the program reads as a bit in the joystick port. When the capacitoris
fully discharged, the inverter gate output flips from logic O to 1. By timing the
two discharges, the program can roughly determine the joystick’s distance
from its upper left position.

CHAPTER 3: PC Game Technology

There are several problems with the joystick operation. First, the stick
position value computed by the program is a function of processor speed
and, curiously, the operating system. Presumably, the faster the CPU, the
higher value it counts, but the same hardware running under plain DOS
gives different readings than it does when running in a Windows DOS box.
Table 3.1 shows the ranges reported by the same joystick on different 486
computers and under different operating systems. The table illustrates that
you can’t make any assumptions about the joystick based on the system
you are using.

Table 3.1 Joystick range comparison
Low X/Y High X/Y Center X/Y

CPU Speed/OS Value Value Value

66 MHz/DOS 87 216 130

40 MHz/DOS 3 106 43

33 MHz/DOS 6 224 90

66 MHz/Win DOS Box 45 110 67

40 MHz/Win DOS Box 12 216 94

33 MHz/Win DOS Box 6 110 45

The second problem is that the joystick’s position values are influenced by
the imprecise electrical and mechanical characteristics of the particular
joystick and controller. The upper left resistances, lower right resistances,
and the center resistances depend on potentiometer tolerances; the discharge
rate depends on the capacitor tolerances; the ranges and center position
values depend on mechanical stops built into the joystick.

The third problem is that the center and outer positions are electrically
unstable, delivering values that flutter several increments even when the
stick is motionless.

We can conclude, therefore, that PC joysticks are imprecise and that the
software needs to know about and compensate for that.

Many games calibrate the joystick by having the user move the stick to
the center, the upper left corner, and the lower right corner and press a
button at each position. This action permits the software to adjust itself
closely to the characteristics of the player’s particular joystick.

33

C++ Games Programming

Other programs use a rough self-calibration routine that assumes that the
joystick is centered when the game begins. Its starting position is stored as
the probable center position, double its X and Y values are stored as
approximate lower right positions, and zero/zero is stored as an approximate
upper left position. These values work when you are using the joystick to
indicate rough directional controls. They work well for flight simulator
operations, where the distance from center determines the roll and pitch rate.
Anything more precise than that needs better calibration and probably needs
better hardware.

Theatrix calibrates the joystick and sends button and position messages to
the game program. Theatrix converts the joystick’s values to 0/0 at the
center. A forward stick position is reported as a positive Y value, rear as
negative Y, left as negative X, and right as positive X. Components of the
game program register for joystick button clicks and mouse movements, and
Theatrix sends messages to the registered game functions to report these
events. The program can ask for the extreme values of the X and Y axes,
which depend on the device and operating system, and can adjust itself
accordingly.

Serial Port
Theatrix allows components of a game to register for serial port input
messages. Each message is a byte value transmitted from a remote device
connected to the PC's serial port. By using this feature, a game can be written
that runs in two-player mode with the players sitting at different computers.

Theatrix does not attempt to encapsulate support for multiple serial ports
at one time. You could implement that feature in your game by instantiating
multiple objects of the serial port class and coordinating the input and output
yourself, bypassing the message system.

The Theatrix serial port server assumes a direct connection of the serial
port. One of the Theatrix utility programs is a modem shell that permits the
players to make the connection through modems before launching the game
executions.

CHAPTER 3: PC Game Technology

Video
A computer program displays words and pictures on the screen by writing
data values into video memory. The video controller translates those data
values into pixels that light up dots of phosphor on the face of the cathode
ray tube. That translation is a function of the video memory contents, the
current video mode, and, in the case of a graphics video mode, the video
palette.

The standard PC video configuration is the Video Graphics Array (VGA).
Early PCs had video controllers with less memory and lower resolution, and
the VGA can emulate those older devices. But the VGA is the mainstream
display device today, and most game programmers target the VGA as a
minimum configuration. Theatrix programs run on VGA-equipped PCs.

Video Memory
Video memory is addressable RAM in conventional memory space (which is
the first megabyte of memory) above the 640KB boundary. VGA graphics
video modes require a minimum of 256KB, and Super VGA (SVGA) modes
can have as many as 4MB, so not all the memory is addressable at the same
time. The program selects banks of memory to address by using the
controller's status and data registers.

Interpreting controller registers and writing data into video memory is not
usually the concern of the conventional application programmer. The
operating system takes care of doing that. Similarly, the application
programmer is not usually concerned with translating text or graphics
renditions into bit streams that the video controller can translate. These
functions are handled by lower-level drivers. The DOS game programmer,
however, does not have the convenience of an operating system that
understands game displays. The DOS game programmer has to do it all.
Theatrix encapsulates most of that so that you do not have to worry aboutit.
Video Modes
The VGA supports a number of modes, which determine how the controller
interprets the contents of video memory. When you turn your computer on,
it starts out in a text mode. The data values in video memory are ASCII
characters and display attribute bytes in a 24 x 80 array. The controller

35

36 C++ Games Programming

displays those characters with those attributes on the screen. Each attribute
byte determines the colors and intensity of its associated character byte.

The graphics modes define the screen resolution and the number of
supported colors. The VGA supports several graphics modes, and the SVGA

supports even more. At its lower levels of abstraction, Theatrix permits you
to use most of these graphics video modes. At higher levels of abstraction,
which free the programmer from these details, Theatrix uses the XVGA
mode, which has a 320 x 240 pixel resolution and 256 colors. The XVGA was
nicknamed Mode X by Michael Abrash in Dr. Dobb’s Journal. For a complete
discussion of Mode X and the other graphics video modes, read Abrash’s
book, Zen of Graphics Programming, listed in the Bibliography.

Video Page Buffers
A VGA controller has at least 256KB and maybe more. Depending on the
currently selected video mode, not all of that memory is used to hold the
data being displayed. Under Mode X there are three page buffers of video
memory, each one able to hold an entire screen full of data. At any one time
only one of those pages is the visible page, which contains the display data
that the user sees. The other pages are hidden in the background. Programs
can rapidly set one of the two background pages to be the visible page,
putting the previous visible page in the background. The switch is
instantaneous, so programs typically write updates to a background page and
switch the page to the visible status when the page is updated and ready to be
seen. This technique avoids the annoying flicker that the user might see if
the program were to update the screen directly in the visible page. Theatrix
encapsulates management of the video page buffers for scene changes and
sprite animation.

Bitmapped Graphics Files
A bitmapped graphics file records the pixel values for a picture in a raster
graphics representation. Each dot on the screen is a picture element,
nicknamed pixel. In Mode X there are 320 dots horizontally and 240 dots
vertically. Each dot is represented by an eight-bit byte, and the value, from 0
to 255, represents the pixel’s color taken from the picture's palette. Thefile
has header information that identifies the picture's resolution, number of
colors, color selection palette, and so on.

CHAPTER 3: PC Game Technology 37

Table 3.2 lists the most common bitmapped graphics file formats.

Table 3.2 Bitmapped graphics file formats
BMP Microsoft Windows Bitmap Format
GIF CompuServe Graphics Interchange Format
PCX ZSoft PC Paintbrush Format
TGA AT&T Targa Format
TIFF Aldus Tagged Image File Format

Theatrix uses the .PCX format during a game's execution, but your
construction tools might produce files in any of several formats. The toolkit
includes a conversion utility that translates between the various formats.

We chose the .PCX format for several reasons. First, virtually every raster
graphics toolfor the PC supports the .PCX format. Second, the .PCX format
supports eight bits of color per pixel, consistent with Theatrix’s 256-color
objectives. Third, .PCX is a comparatively simple format, lacking the
complexity and overhead of the more complex formats. Finally, .PCX’s run-
length-encoded (RLE) compression format is not protected by software
patents, and programmers are free to use the .PCX format in any manner.

For a complete discussion of bitmapped graphics file formats, read
Bitmapped Graphics Programming in C++, listed in the Bibliography.

The Palette
Mode X can display 256 different colors at any one time. Those 256 colors
represent a subset of the 256KB colors available on the VGA. Each display
consists of two parts: the display data array and a palette of colors from
which to choose. The display data array consists of eight bits for each pixel
position on the screen. The eight-bit value is offset into the palette, which
contains 256 entries (one for each color that is available). Any given image
can have a palette made up of any 256-color subset of the 256KB possible
colors.

Image construction utility programs, such as paint programs and ray
tracers, determine the palette for the image being constructed. You can easily
wind up with several components of a game that have different and

38 C++ Games Programming

incompatible palettes. The VGA can work with only one palette at a time. If

you superimpose a sprite on a background and if the palettes of the sprite and
the background are incompatible, the sprite’s colors will be wrong. If you use
a system-generated mouse cursor and if the cursor’s palette conflicts with the
current image, the cursor’s color will not be what you expect. It is even
possible for frames of a video clip to have different palettes.

Ray tracers, which are discussed in more detail in Chapter 4, cause the
biggest problem. They generate images from subtle combinations of colors to
achieve their photo-realistic effects of lighting, shading, reflection, refraction,
and diffusion. Two renderings of the same 3-D model with a slight change of

camera angles will surely result in two different palettes. This is no problem
if you are simply changing scenes. The VGA adjusts to new palette
information instantly. But if you are using a common sprite or cursor on the
two scenes, the palettes of those images will conflict with at least one of the
palettes of the scenery.

With all these palette collisions to worry about, you might well wonder
how you can get it all coordinated. The Theatrix toolkit includes utility
programs that process sets of images and normalize all the palettes so that
the pictures display the way you want them to. Chapter 4 discusses the
strategy of palette correction, and Chapter 6 describes the Theatrix tools for

doing that.

Graphics
An old cliché says that a picture is worth a thousand words. True enough,
and unless you are writing one of those text-mode adventure games, you will
involve pictures in your game. Chapter 4 discusses the strategies for building
pictures to depict static scenery and animated characters. Here we are
concerned about designing them and getting our ideas closer to an
implementation. To do that we need to understand the strengths and
limitations of the VGA’s ability to display pictures from a technical as well as
an artistic viewpoint.

The background scenery is a 320 by 240, 256-color picture displayed from
a .PCX file. It can come from nearly anywhere. Chapter 4 discusses these
strategies in more detail, but you can build the picture with a paint program
from a 3-D model. You can use a ray tracer to build a photo-realistic picture.

CHAPTER 3: PC Game Technology

You can even use a photograph, print, or painting that you scan into a
PCX file with a flatbed color scanner. Keep in mind, though, that paintings
and photographs are artistic creations and are subject to the laws protecting
intellectual property. If you are going to use the work of others, be sure that
you have the right to do so.

Be careful, also, about what you yourself photograph. You might hold the
copyright to pictures that you take, but if the picture includes people, make
sure that you have their permission to use their images in your published
work. Remember that people not in the public view have certain rights with
respect to privacy, and you must observe those rights or bear the
consequences. The same caution should be shown with the pictures of the
property of others, particularly where business icons or logos are involved. If
you are going to use these things in your game, make sure that a lawyer has
blessed the practice. Neither of the authors of this book is a lawyer, and the
advice we give here should not be interpreted as authoritative legal opinion.
When in doubt, get professional legal advice.

Theatrix does not care about the source of the background file or the
complexity or realism of what it depicts. The library’s performance is not
affected by those parameters. Once you have a .PCX file of the correct
resolution, it’s all the same to Theatrix. Thefile sizes vary, depending on the
density of the material and the .PCX file’s compression algorithm, but the
software to display the files and, for the most part, the overhead required to
fetch and write them to video memory is about the same. And it is fast.
Theatrix can flip scenes instantaneously.

The characters in a Theatrix game are displayed from libraries of graphics
inserts built with 256 colors but at lower resolutions. The height and width
of the sprites are determined by the resolution of the inserts when compared
to the 320 x 240 pixel resolution of Mode X. You build or render in advance
all the viewsof the sprite to support the animation frames ofits action.

The VGA supports higher resolutions than Mode X does, and the resulting
realism can be better, but performance degrades somewhat. It takes longer to
fetch and display a 640 x 480 picture and longer still for one with a resolution
of 800 x 600. If you make rapid scene changes, you can see the difference at
the higher resolutions on slower machines with slower video cards. It also
takes much more disk space to record those pictures.

Bear in mind that you are building a game. It’s supposed to look like a
game. It's not necessarily supposed to look like a movie, although some

39

C++ Games Programming

contemporary interactive multimedia games are getting close to that kind
of realism.

Choose an artistic genre in which to display scenery. Be consistent in that
choice. A cartoon-like character wandering around a photo-realistic
moonscape looks more like a cheap TV commercial than it does a game.
Likewise, a shiny, ray-traced robot trekking through a Grandma Moses-like
scene is unconvincing. We can believe in cartoon characters in cartoon
worlds, and we can believe in photo-realistic characters in a photo-realistic
world, but it takes creative energy to effectively mix the two.

Also be consistent in the appearance of different scenes in the same game.
If you jump about from one style to another just because you happen to have
the pictures and it is convenient to use them, your players will be, if not
turned off, then at least confused about the story you are trying to depict.

Some games, such as flight simulators and 3-D maze games, render their
scenery in real time at runtime. They have to because the scene being viewed
is a function of where the player has positioned the viewport, and the game
permits a view from virtually anywherein the three-dimensional universe. It
would be impossible to compute every possible position and viewing angle
and then render in advance every scene as viewed from every position.

Flight simulators typically use static graphics with animated inserts to
represent the instrument panel. Then they render the outside scenery in real
time by computing the view of each frame from a 3-D modelof the scenery
and features. They employ all the computer graphics tricks to provide solid

geometric shapes with surface generation and hidden line removal. The
technique is effective and impressive, but it limits the amountof texture and
shading that the scenery can have. The incidence of buildings is sparse
because the program can compute only so many features during the brief
timeit has to render each frame.

Three-dimensional maze games use techniques called ray casting and
texture mapping to compute every frame of an indoor scene. They map the
frames of animated characters over this scenery by choosing from a fixed
number of views and sizing the view in real time to represent the distance of
the character from the player's view. The result is a dazzling display of rather
fuzzy scenes that suggest, rather than accurately depict, the walls and doors
of the maze as theyslide by. Players do not mind, because the action is so fast
that the passing scenery would be a blur anyway.If you holdstill long enough
to regard the scenery, something ugly will kill you.

CHAPTER 3: PC Game Technology

Sound
Sound effects dramatically enhance a game’s operation. The Shootout
example on the accompanying CD-ROM illustrates this principle. The game
works as well without the sound effects, but it is much more fun when you
can hear them. Doors open and close, guns fire shots, bodies thump when
they hit the ground, the sheriff's gun clicks instead of fires when it is empty,
and the citizens applaud when you win the game.

What Is Sound?
Sound occurs when something disturbs the air. The movement of the air
vibrates our eardrums, which send signals to our brains. If a tree falls in the
forest and no one is there to hearit, the air still gets moved around whether
or not anyone or anything is there with earsto interpret it.

Sound can be viewed as a waveform. Push the air one way and the
waveform rises. Pull the air the other way and the waveform drops. Increase
the frequency and the pitch rises. Increase the amplitude and the volume
rises. Mix two different signals and you combine sounds.

Anything sensitive enough to move with the air vibrates in a pattern that
resembles the waveform. If you turn it around and cause the air to vibrate in
the same pattern by duplicating the waveform mechanically or electrically,
you can reproduce the sound.

Recording Sound
Edison recorded and played back sound mechanically. He simulated an
eardrum with a diaphragm at the base of an amplifying horn. At the center of
the diaphragm he positioned a needle. Edison spoke the words of “Mary Had
a Little Lamb” into the horn. His voice moved the air, which vibrated the
horn, which vibrated the diaphragm, which vibrated the needle, which
etched a groovy pattern across a wax cylinder that Edison rotated with a
crank as he spoke. Thus the waveform of Edison’s voice was recorded. Then
he tracked the needle back through the etched pattern’s groove to vibrate the
needle, which vibrated the diaphragm. The horn amplified the vibrations, and
Edison's recorded poem was reproduced—played back.

41

42 C++ Games Programming

Records and audio tapes are analog devices!. They store their information as
analog signals that represent, as accurately as possible, the waveform of the
original sound. The recording equipment starts with air moving a
microphone’s sensitive diaphragm the same way that Edison did. But from
that point the process is quite different. Instead of mechanically transferring
the vibrations to an etched track, the electronics convert the vibrations into
an analog, amplitude-modulated electrical signal and store the signal as
charged particles of emulsion on magnetic tape. If a vinyl record is to be
made (rare today because of the popularity of compact disks), the master
pressing is made in fundamentally the same way that Edison made his first
recording except that an electrical signal played back from the master tape
vibrates the etching needle.

Digital Recording
The recordings just described are analog recordings. Computers reproduce
sound as digital recordings. They store sound signals as binary strings. Except
for synthesized sound, which uses algorithms to approximate sound
waveforms, computer sound originates as real sound that is recorded
digitally. If Edison had owned a PC with a Sound Blaster, he would have
recorded “Mary Had a Little Lamb” onto a hard disk file as a digital bit
stream.

1 An exception is the digital audio tape (DAT) preferred by most sound engineers today.

CHAPTER 3: PC Game Technology

Sampling
The digital bit stream that records sound in a computer is a sample of the
original analog sound signal waveform. The computer samples the amplitude
of the waveform at fixed intervals. The interval frequency is called the
sampling rate. At each of these intervals, the computer stores a binary value
that represents the amplitude (the height on the waveform) as a signed
integer. The higher the sampling rate, the more accurately the digital bit
stream represents the original audio sound.

Another variable in a bit stream sample is its resolution, which is the
number of bits available for each sample. The more bits you use, the wider
the dynamic range of the signal when it is played back. Eight to 16 bits are
typical. Professional recording equipment uses 16 bits of resolution.
Sixteen-bit sound cards are not unusual on PCs now, but eight-bit cards are
far more common.

The combination of signal length, sampling rate, and resolution
determines how much storage space is needed to record the signal. This value
is an important concern. The game program needs to store the sound clips in
a disk file to distribute with the game, and it needs to load them into RAM to
play them back.

Most game sound effects play back well with a sampling rate of 5,000 to
11,000 and with eight bits of resolution. One thing is certain: You must play
back a sound clip with the same sampling rate and resolution with which it
was recorded. Otherwise the sound is garbled and its duration is wrong.

VOC Files
Theatrix uses the standard Sound Blaster .VOC file format for sound effects.
This format is readily adaptable to the different sound card drivers that
Theatrix supports. The VOC file format assumes an eight-bit sampling
resolution and a variable sampling rate specified by header information in the
data stream.

The format is convenient because it is a standard and because there are
utility programs that convert between .VOC files and the formats of other
kinds of sound files. Theatrix organizes the .VOC files into disk file libraries
of sounds. Each character in a game can have its own library. If different
sprites use different sound effects and voices, you can maintain their sound
clips independently.

43

44 C++ Games Programming

Music
Every game programming book that we have read either ignores the subject
of music or addresses only the technical issues of how to play back a MIDI
file. The authors defer the creation of their music to contributors to their
book, make no effort to explain the process, and suggest that you do the
same. Yet many programmers are musicians, too, and can understand the
creative side of the musical aspects of game construction. We discuss some of
that here, assuming that you have some understanding of musical theory or,
at least, an appreciation of the implications of music in any kind of

. entertainment medium.
How important is music to a game? Many arcade games do not use music.

The creators of Myst considered leaving music out of their production.
Fortunately, they reconsidered and applied the additional effort to include
background music in each scene. As you move from place to place in the five

: Myst islands, mood music dramatically enhances the visual effect at every
change of scenery. The game would not be nearly as effective without
background music.

Adding background music requires several steps. First, you identify where
in the game the music occurs and what kind of music you want at each
scene. Next, you compose or acquire the music. Then you translate the
music into a format the computer can read and play back. Finally, you
integrate the musical score into the game.

Setting the Mood
Background music sets a mood. Imagine the Lone Ranger without the
William Tell Overture. Ta da dum. Ta da dum, ta da dum dum dum. The two
go together. Rick’s without Sam playing “As Time Goes By” wouldn't be
Rick’s. When, in Psycho, the corpse of Mrs. Bates spins around in the chair to
face the audience, the effect would not be nearly as scary without the
pulsating, piercing, screaming music.

As in the movies, each scene in a game has a theme, and music can
dramatically reinforce that theme. If the player is deep in the bowels of a dark
cave, the cave music could have an ominous, dank feeling. Eerie, scary music
could accompany a trip through a haunted house. A child’s game might use a
happy tune that the child recognizes, such as “Here We Go ‘Round the
Mulberry Bush.”

CHAPTER 3: PC Game Technology

We learn through experience to associate different kinds of music with
certain moods, and thus our mood changes when we hear the music. A
funeral dirge elicits sadness. The Charleston is a happy dance. The blues
make us feel sorry for ourselves. Old-time rock and roll is uplifting. Heavy
metal is mind-numbing. A march evokes rousing feelings of patriotism. Some
music is scary. Some music is romantic.

Some music is foreboding. Music prepares the player for coming events by
foreshadowing a mood. You look at a closed door. Without music, the dooris
nothing more than that—a door. Add a low, sustained diminished chord
played on an organ, and you know that something bad will happen if you
open that door. The mood created by the music compels you to either run
away or open the door and accept the worst.

Watch contemporary TV commercials to see how music sets a mood. Sad
music plays quietly. A woman speaks. “I didn’t realize that Sam’s funeral
would set us back six thousand dollars.” The message: Don’t be sad. Buy our
life insurance. A contemporary blues singer sings, “Your true voice,” bending
her notes around in a way to suggest a caring, soulful mother. The message:
We care for you deeply. Come back to our long distance service.

Try not to use music inappropriately. An urban scene of cars, noise, and
street people does not fit with excerpts from the Grand Canyon Suite.
Ragtime would be out of place in a funeral parlor. The 1812 Overture
would not work with a scene of fluffy clouds, flowers, songbirds, and
butterflies. A polka would not particularly enhance a scene set in the
House of Parliament. Watch movies, particularly older ones, to see how
music is used to enhance scenes.

MIDI

Even though music is sustained sound, game programs do not usually use
.VOC sound files for music clips. The storage requirements would be too
restrictive. Music clips are usually longer than sound effects, and they require
a higher sampling rate to prevent the distortion that people don’t notice with
voice and sound effects. Fortunately, you have an alternative, something
called the musical instrument digital interface (MIDI).

Several years ago, the electronic music industry did something that the
computer industry is rarely able to do: It established standard protocols and
formats for data streams of packets that represent musical sounds. All the

Gls

C++ Games Programming

industry members uniformly adopted and implemented the MIDI standard in
their products. The effort was collaborative, cooperative, and friendly, and
was undertaken without rivalries or market pressures. The computer
industry could learn a lot from the music industry.

The MIDI protocol was designed to allow various electronic synthesizers
to be connected in a standard way. A synthesizer is a device that produces
musical sounds electronically. Electric pianos, organs, drum machines, and
so on are synthesizers. The synthesizer produces the sound of each note
electronically either with an algorithmic synthesis of the desired instrument
sound or by playing the note from a library of samples.

A sampleis a recording of one note made with a musical instrument. The
noteis digitized and stored in a sample library. Sample libraries usually have
several versions of each note for each instrument, reflecting various attacks,
dynamics, and so on.

The MIDI protocol specifies digital packets that tell synthesizers what
notes to play, how long to sustain them, and other variables such as the level
of attack to apply when the note is first sounded, the pressure to apply while
the note sustains, and so on.

A stream of MIDI packets tells one or more synthesizers how to play a
song. A MIDI stream is the electronic equivalent of a player piano roll but
with much more potential.

You can create MIDI packet streams in real time by playing music on a
synthesizer (typically a keyboard). The synthesizer translates the notes you
play into MIDI packets and transmits a stream of packets through the
synthesizer’s MIDI output port.

Synthesizers and sequencers (discussed soon) read MIDI streams into their
MIDI input ports and play the notes from the stream. MIDI synthesizers can
be connected in series so that you have several synthesizers interpreting and
playing from the same stream.

Each MIDI note packet specifies one of 16 channels. Each of the
synthesizers in the series typically processes the packets addressed to only
one of the channels.

21t is not uncommon, though, for a MIDI instrument to incorporate more than one instrument
device. Electric pianos often come equipped with integrated drum machines and sometimes with
a complete set of 128 instrument patches.

CHAPTER 3: PC Game Technology 47

A sequencer is a device that can read files of MIDI data and transmit the
packetsto the instruments. A sequencer can also record MIDIfiles by reading
the notes being played on a MIDI synthesizer. You can record the notes from
each synthesizer independently, adding each new channel to the channels
already laid down. In this way one person can independently record all the
instruments of an entire orchestral arrangement.3 Each of the 16 channels in
a sequencer is assigned a unique instrument voice selected from a standard
table of 128 instruments. The sound assigned to an instrument is called its
patch.

With a sequencer you can make corrections and modifications to the notes
in a MIDI file. This permits a sequencer programmer to touch up a
performance after it has been originally laid down. You can also change the
patches that have been assigned to selected instruments and change the
instrument voices assigned to selected channels.

Contemporary PC sound cards have all the hardware necessary to support:
sequencing. They have MIDI input and output ports, and they can produce
the sounds of all 128 of the standard patches. This means that you need only
a PC, a good sound card, speakers, a MIDI keyboard, and a sequencer program
to record and play back MIDI files. Furthermore, all that the game player
needs is a PC with a sound card and speakers to play your game and hear the
background music.

Composing Music
Several of the example games on the included CD-ROM have original songs
composed for this project or adapted from other original compositions from
the author’s portfolio. Three of them were composed extemporaneously at
the keyboard by using a sequencer program to capture the MIDI data. You
can listen to them in the Town demonstration game on the CD-ROM.

Two of the extemporaneous songs have no structure and are meant to
imply a mood. When you get close to the church door in the game, you hear
what sounds like a funeral processional played on a church organ. This song
consists of random chords played in slow succession with an occasional but

3A joke among musicians tells about the studio musician who showed up at work for a recording
session. To his surprise, a full, 40-piece orchestra was already there getting ready for the session.
He looked at them all and said, “I hope you people realize that you're putting three sequencer
operators out of work.”

48 C++ Games Programming

mostly unintentional harmonic resolution. We dubbed another track with a

constantly repeated chime to suggest the church bell ringing mournfully in
the background.

The second formless song plays at the front of the brick house. It uses a

Hammond organ voice and is meant to suggest something ominous. The

song consists mainly of a progression of minor and diminished chords,
although anyone could get the same effect with a random pattern of chords of

three and four unrelated notes each.

The third extemporaneous song is a ragtime improvisation on a common
eight-bar chord progression (A7-D7-G7-C) repeated twice. This song plays
during the video clip sequence of the Town game and is the background
music for the street scene in the Shootout game. One of the benefits of MIDI
is that musicians can produce music beyond their own technical abilities. By

using a sequencer program, you can record the stride style of the ragtime
piece in two passes at a slower tempo. One pass provides the octave-chord
pattern of the left hand, which you can play with two hands in the first pass.
Then you can overdub the right hand patterns in the second pass. This
technique is how intricate player piano rolls of long ago were often made.

Even if you do not play the piano, you can transcribe music manually into
a sequencer program by reading the score and using the manual note entry
features of the program. Most of the songs that you download from on-line
services were built that way. The result is usually a mechanical effect with
no emotion or human interpretation built into the performance.

Acquiring Music
Not every programmer possesses the musical ear or skills to build an
effective musical score for a game program. Likewise, not every skilled
musician knows how to get the best effect from a MIDI system. Sometimes
you have to look elsewhere for what you need. Locating someone who can
get the job done might not be as difficult as you think.

To start with, you can probably find professional MIDI composers and
scorers in your home town. Look in the Yellow Pages for recording studios
and audio technicians. Call around. You will find someone who has the skill
and equipment to build effective MIDIfiles. Be prepared to pay dearly for this
service, particularly if you want original compositions.

CHAPTER 3: PC Game Technology 49

Amateur musicians are plentiful, too, and you might be able to find
someone who is willing to help you in exchange for a royalty arrangement or
perhaps even for the exposure of an acknowledgment in your credits.

Be careful about downloading and using MIDI files from on-line services
and the Internet. There are plenty of such files, but the issues about who
owns the intellectual rights to the compositions, the arrangements, and the
files themselves are rarely clear. The CompuServe Information Service
recently removed many of the MIDIfiles from its libraries and suspended
accepting any more uploads of MIDI files because of complaints that
distribution of the files might violate copyright law.

Public domain songs are usually a safe way to go if you cannot compose
original music yourself or if you cannot afford the services of a composer.
Mostclassical compositions, hymns, and old traditional folk songs are in the
public domain.

Use extreme caution with respect to public domain material. Make surethat you know the status of anything you use. You wouldn't want to wind upin court. Make no assumptions about anything, and do your research. Not
everything thatis old is necessarily in the public domain. For example, in the
early 1950s the copyright was about to expire on Debussy’s “Claire de Lune.”
To retain the copyright for an additional period, the beneficiaries of Debussy’s
estate had lyrics added to the melody. The result was an abomination called
“Moonlight Love.” The popular crooner Perry Como, in an uncharacteristic
lapseof taste, recorded the song.

Once again, we are not lawyers. Ask one if you are notsure.

Recording Music
If you know how to use a MIDI keyboard, you can use a sequencer program
to enter musical tracks into your computer and create a MIDI file. Once
everything is connected and the program is running, you can begin to
construct your song one channel at a time. You choose a channel and assign
an instrument to the channel from the standard instrument table. By
convention, channel 10 is assigned to the drum sounds, and specific drum
sounds—cymbals, snares, bass drums, wood blocks, and so on—are assigned

to the notes ofthe scale.

50 C++ Games Programming

Some sequencer programs allow you to select from a collection of musical
styles. The sequencer adds drum machine patterns to the song in keeping
with the style—bossa nova, swing, rock, and so on—that you have chosen.

While you record a new channel, the sequencer plays back the existing
channelsso that you can stay synchronized with the song.

Most sequencers allow you to quantize a channel after you have entered
the notes. It is impossible for human beings to accurately play precise
sixteenth, eighth, quarter, half, and whole notes, no matter how well they
read music. The sequencer captures exactly what you play, and the musical

score, if you were to print it out, would be unreadable due to the many thirty-
second and sixty-fourth notes that represented what you really played. The
quantizer normalizes those notes to the resolution that you specify.

A sequencer can transpose a song, which changes the key signature in
which the song is played. Perhaps you can play only in the keys of C, F, and
G,—not uncommon among amateur pianists—but the song sounds better or
better conveys the mood in a different key. You can transpose the song into

any key at all after you haveit programmed.

Adding the Musical Score to the Game
A Theatrix game program plays music by using the MIDPAK library, as
described in Chapter 4. The library includes a utility that puts MIDI files into
a collection that Theatrix treats as a score. The game program instantiates an
object whose purpose is to play selected songs from the score on demand.
That object's class encapsulates the interface to the MIDPAK library.

32 Bits and Protected Mode
Theatrix, as published in this book, is not a 32-bit protected mode library. If

you plan to build huge game programs with enormous collections of media
clips, you might need the 32-bit flat memory model provided by DOS
extenders.

4Many professional lounge pianists would love to have that feature built into their pianos to
support the amateur singers who hang around the bar hoping for a moment in the spotlight.

CHAPTER 3: PC Game Technology

One of the reasons that we did not start with a 32-bit model was that
Fastgraph, the graphics library that we used, does not have a 32-bit version
released as shareware. It does, however, support 32-bit development in its
commercial version.

To convert Theatrix to a protected mode library, you must modify several
things. First, you must look at all usages of the int data type to see whether
they need to be changed to short int to preserve their 16-bit type size. Second,
you should eliminate the uses of extended memory in the Media class for
storing sound and graphics clips. Third, the few places where the library
attaches interrupt vectors must be examined and converted to the
conventions of whichever DOS extenderis to be used.

For the time being, Theatrix works only with the Borland C++ compiler
because that compiler implements the RTTI extensions to standard C++.
Therefore, you probably want to use Borland’s Power Pack as a DOS extender
to convert to 32-bit code.

If this project is well received, we will publish a second edition that
implements the DOS version of Theatrix as a 32-bit, protected mode library.

These issues are, of course, irrelevant to the Win32 version now under
development.

51

Game-Building
Strategies

“Show me a good loser and I'll show you a loser.”
Common paraphrase of a Knute Rockne quotation

This chapter shows you how to build the components of a game by using the
tools in the Theatrix toolset. You learn about the application of those tools in
the construction of your game. We will describe the procedures and identify
the tools that we use for each step of the design process. The tools are
described in Chapters 6 and 11 and in the documentation files that
accompany them. In this chapter you will learn about these subjects:

© Scenery
Animation
Video clips
Palette correction
Sound effects

¢
0
0
0
9

Music

53

54 C++ Games Programming

Scenery
Scenery is the background of a scene in a game. You build scenery by
building a bitmapped graphics file. There are three strategies: You can scan in
a scene from an existing picture, manually design the scenery by using a
paint program, or render the scenery by ray-tracing a 3-D model of the scene.
We discuss each of these strategies in this chapter.

Scanning
We've never seen a game in which the background scenery was scanned in
from a photograph or a print of a painting, but there is no reason why youcould not do it. Imagine a game that uses photos of Mount Rushmore, the
Grand Canyon, or the Eiffel Tower as its background.

Suppose that you have a print of an old painting or a photograph of an
appropriate scene. Perhaps you went to the city or country on a vacation,took some photos, and had them enlarged.

First review the discussions in Chapter 3 about intellectual property
rights. Then proceed.

To use these pictures as Theatrix scenery, you need a flatbed color scannerand software to scan the pictures and translate them into .PCX files of 320 x
240 pixels with 256 colors. The translation is simple enough with the tools in
the Theatrix toolkit. Alchemy and NeoPaint are discussed later in this
chapter and in Chapter 11, and both of these packages can translate
bitmapped file formats.

As an alternative to scanning, you can use the services of companies that
develop your film as diskette images to display on your computer. The local

CHAPTER 4: Game Building Strategies

photo shop should be able to refer you to the right companies. If you can get
that picture display in a Windows application, for example, you can use the
Clipboard to import it into Windows Paint or another image program to
convert it to 256-color .PCX format.

Painting with NeoPaint
The easiest way to build a background scene is to paint one using a paint
program. The Theatrix toolkit includes NeoPaint, a full-featured shareware
DOS paint program.

If you like NeoPaint and intend to use it, you must register the product.
Text files on the CD-ROM along with the program files explain how to
register.

Figure 4.1, the scenery for the Shootout game, was created with NeoPaint.
(You can see a full-color rendering of this scene in the color insert pages at
the middle of the book.)

Figure 4.1 Shootout background scenery

Shootout’s scenery has an arcade look, which is consistent with the game
that it supports. With the exception of the mountains on the horizon and the
cloud in the sky—which we drew manually with the pen tool—the picture
was built from standard NeoPaint primitive shapes and patterns. The

55

56 C++ Games Programming

buildings, windows, and doors are rectangles. The sidewalk and street are
simple lines. The bricks and shingles and the textured chimney pipe on the
jail are standard NeoPaint fill patterns. The lettering is from the standard
NeoPaint fonts. We used the Fill tool to color the sky, mountains, sidewalk,
street, and scoreboard.

It took no longer than five minutes with NeoPaint to draw this scene.
Once it was drawn, we zoomed in on various points of the picture and moved
the cursor to record the coordinates of critical locations. For example, the
characters in the game appear in windows, from behind buildings, and from
behind doors. The game program must know specifically where to clip the
images as they come into view. It must also know where the sidewalk is for
the bodies to fall and where to superimpose the open door images. The digit
positions where the score is displayed are also important.

| 3-D Modeling with MORAY
The third option for creating scenery results in photo-realistic scenery but
with a computer-rendered look. The scenes don’t always look like actual
photographs (although they could), but they have realistic features based on
textures, shadows, reflections, refraction, diffusion, and so on.

First you build a 3-D model of the scene, and then you render ray-traced
images of the scene taken from various views. We’ll discuss the first step,
creating the model, first.

A 3-D modelis a computer representation of planes and objects organized
to resemble something real. You build the model with a 3-D modeling tool.
The Theatrix toolkit includes MORAY, a DOS shareware 3-D modeler that
produces files in the POV-Ray source code format. POV-Ray, the tool used in
the second step of this procedure, is discussed later in this chapter.

If you like MORAY and intend to use it, you must register the product.
The author updates MORAY frequently. As this book goes to press, there is a
new beta with many new features. We encourage you to download and
register the new version when it is available. The MORAY documentation on
the CD-ROM explains how to register, get support, and get new versions.

MORAY resembles a typical CAD system in that it allows you to build a
wire-frame 3-D model by manipulating views from three coordinates and
displaying an isometric view. MORAYis not as intuitive a program as
NeoPaint because MORAY assumes that you have a basic understanding of

CHAPTER 4: Game Building Strategies 57

3-D models and the capabilities of POV-Ray. But with practice, a designer can
do impressive work with MORAY.

Figure 4.2 shows the MORAY screen with a model of a Jeep that we built
from standard shapes.

Figure 4.2 MORAY 3-D model of a Jeep

The Jeep model is complex, but it is only one element in a scene. The Town
example game on the CD-ROM has scenery that includes several buildings,
and each building is a separate model created from common component
models. For example, we built one house frame, one door, one window, one
dormer, and so on, and then built several house models from those MORAY

components. Figure 4.3 shows one of the house models loaded into MORAY's
design screen.

To complete the scene, we built a town model with the three houses, a

church, two streets, some trees, and two copies of the Jeep. Figure 4.4 shows
the town model loaded into MORAY’s design screen.

You add textures and lighting to a model from within MORAY, butit does

not render the picture itself. For that, it launches POV-Ray. You can make
sample renderings as you go along, and you should do that at a low
resolution. Rendering is a time-consuming operation. Eventually, however,

you want to render the actual scenes for the game.

58 C++ Games Programming

Figure 4.3 MORAY 3-D model of a house

Figure 4.4 MORAY 3-D model of a town

CHAPTER 4: Game Building Strategies

Ray Tracing with POV-Ray
The second step in producing scenery from a 3-D model is to render the
various scenes from the POV-Ray source code that MORAY produces.
MORAY exports its model to POV-Ray source code. POV-Ray is a ray tracer.
It reads files of ASCII source code and translates the statements in the source
code into an image.

POV-Ray is a freely available program that anyone can download from
CompuServe and the Internet. There are no fees for its use, and you are free
to render images and distribute those images without obligation.

POV-Ray source code statements specify shapes, textures, planes, lighting,
camera position, and so on, and POV-Ray uses those data to compute every
pixel of the rendered image. POV-Ray writes rendered imagesto files in the
TGA bitmapped graphics format.

The POV-Ray source code includes the camera positions and lighting that
you established with MORAY; those values, as written by MORAY, define
only one scene. Even though the game will have several scenes, only one
POV-Ray source code file is needed. Each scene's source code file differs only
with respect to its camera position. Every thing else is the same.

First you decide how many background scenes the game uses from this
model. The Town game, for example, uses 11 different scenes built from the
same model. To build those scenes, we used MORAY to determine the ideal
camera locations, directions, and apertures for each scene. This procedure
involved loading the model into POV-Ray and moving the camera until the
scene looked right in the isometric view. Then we wrote down the camera
position for each scene. Next, we used a text editor to create alternative
camera positions in the source code file, but we commented out all the
settings except one. Listing 4.1 shows part of the camera statement in the
TOWN.POV file. This example assumes that only three scenes are used
instead of the actual 11, but it illustrates the point.

59

C++ Games Programming

Listing 4.1 TOWN.POV, camera statement
camera){ // Camera Camera0l

location < 0.000, -10.000, 1.600> // TOWNO1

// location < 0.000, -24.500, 1.600> // TOWNO2

// location < 0.000, -24.500, 1.600> // TOWNO3

direction <0.0, 0.0. 1:0) // A11 scenes use these values
sky <0.0, 0.0.1.0 fs g : a ’

up 0.0, 0:0,.1,0> ths 5 3. ii Y

right <123333. «0.00.0 Tif " 2 " Y

look_at < 0.000, -55.000, 1.600> // TOWNO1

// look_at < 0.000, -55.000, 1.600> // TOWNO2

// look_at <-10.000, -24.500, 1.600> // TOWNO3

}

The camera statement declares the camera parameters for the scene. The
location statement specifies coordinates in the model where the camera is
positioned. The look_at statement specifies the point in the model where the
camera is focused. These are the statements you will change for each
rendering. In this example, all the statements except for TOWNO! are
commented out. After TOWNO1 was rendered, we commented out its
statements, uncommented the statements for TOWNO02, and rendered the
scene for TOWNO2. We repeated this procedure until all 11 scenes for the
Town game were rendered into .TGA bitmapped graphics files.

POV-Ray source code looks a lot like C++ source code, so programmers are
comfortable with it. Some programmers and modelers work directly with the
source code rather than use MORAY. Most people, however, prefer to work in
a visual medium rather than use the abstract expression of source code.

An advantage of this approach is that you do not need to be concerned
with perspective when you design scenery the way you would if you hand-
painted every scene. If you build a set that has objects whose relative sizes
are consistent with one another, then the ray-tracer will properly render the
scene with correct perspective. All you have to do is position the camera.

CHAPTER 4: Game Building Strategies

Converting Bitmapped Graphics Files with Alchemy
POV-Ray’s output is in the .TGA bitmapped graphics format. To use the
pictures as scenery in a Theatrix game, you have to convert them to .PCX
format. For that purpose we use a shareware program named Alchemy.

If you like Alchemy and intend to use it, you must register the product.
Text files included on the CD-ROM along with the program files explain how
to register.

Alchemy reads bitmapped graphics files and translates them to other
bitmapped graphics file images. We use it to build eight-bit .PCX files from
the .TGA files that POV-Ray produces.

Figure 4.5 shows TOWNO1.PCX as POV-Ray rendered the scene and as
Alchemy converted the .TGA file into the .PCX format.

Figure 4.5 TOWNO1.PCX, a rendered scene

Before the .PCX files for the game’s scenery can be integrated into the game,
you must normalize the palettes for all the graphical elements. That
procedure is described in this chapter in the section titled Palette Correction.

61

62 C++ Games Programming

Sprites
Sprites are the characters in your game. As with scenery, you build sprites in
one of three ways depending on the look you want. You can use NeoPaint to
build sprites, you can use MORAY to build a 3-D model and POV-Ray to
render sprite images, or you can make photographs of actual models, all of
which create .PCX files with sprite images.

Before these .PCX images can be integrated into the game program, you
must normalize their palettes with the other graphical elements in the game.
This procedure is described in this chapter in the section titled “Palette
Correction.”

Painting Sprites
Figure 4.6 is the skating figure from the Skater game as built with NeoPaint.

Figure 4.6 A skating sprite

Sprites such as the skater have an arcade, cartoon look. In the enlarged figure,
you can see all the jags and increments. With more work, we could have
made this sprite look better. By using different color tones, you can suggest
form, shading, and texture. This sprite is small, though, and its movement is
fast. Much of the detailed work would be lost in the motion.

CHAPTER 4: Game Building Strategies 63

3-D Modeled Sprites
When the sprite in Figure 4.6 is displayed in its actual size and moving on the

screen, the effect is more realistic, although not as realistic as ray-traced
sprites (see Figure 4.7).

The sprites in Figure 4.7 were built from MORAY 3-D models and
rendered with POV-Ray. The only difference between the sprites in Figure 4.6

and those in Figure 4.7 is the technique used to create the .PCX files.

Figure 4.7 Ray-traced sprites

Using Real Models
For this approach, you need more equipment: a good camera with lenses and
filters, a tripod, and good color-corrected lighting. You also need a studio
environment where you can photograph the model in various poses against a

solid background with minimal ambient light interference.

C++ Games Programming

You make a snapshot of every pose of the sprite in its animated role. (See
the “Animation” section.) Then, as with photographed scenery, you translate
those photographs into .PCX files with a scanner or by using a diskette
medium developing service.

What can you use for models? Toys are good. You may use anything that
isn’t copyrighted. This could be a problem. A game featuring Ken and Barbie
is bound to get the attention of a lawyer or two at the Mattel Corporation.
Almost every toy is protected by copyright law, and yet toys provide the best
source for game models.

You might be able to alter a toy in such a way that it no longer resembles
the original. For example, costumes and makeup could help you turn GI Joe
into a drag Dracula. For vehicle sprites, you could build and drastically
customize plastic models that you buy at the hobby shop, perhaps using
components from several models to create a hybrid. There should be no
problem using models of military aircraft and commercial automobiles, but
models of the StarShip Enterprise or Han Solo’s space junker are off limits—
unless you get written permission from the copyright holders, of course (fat
chance).

The best approach is to create something original. If you can sculpt or sew
creatively, you can make models of anything you like. A pleasant afternoon
spent watching The Nightmare before Christmas on your VCR will give youideas of what can be done with original models.

Whatever you use for a model, it must be able to maintain a rigid
pose long enough for you to photograph it. To support animated sequences, it
should permit small changes in its appendages. You might haveto suspend it
from a wire or mountit on a black shaft to get the pose you want. Figure 4.8
is a photographed sprite.

Figure 4.8 A photographed sprite

CHAPTER 4: Game Building Strategies

Animation
Animation is where the action is. To add action to a game, you make a sprite
move around the screen and do interesting things. Whether the sprite is a

spaceship or a cowboy, a street fighter or an ice skater, the underlying
principle is the same: Animation is the product of showing a sequence of

frames, with each frame representing the next increment of motion in the

sequence. The motion is an illusion. Nothing really moves. Every picture
that we see is a still frame. But when the frames are shown in rapid
succession, our brains are tricked into thinking that we are seeing motion.

Motion: One Frame at a Time
Figure 4.9 shows five successive frames that, when shown in rapid
succession, make the sheriff in the Shootout game seem to be walking. The

sequence of five frames repeats until the game program wants the sheriff to
do something other than walk to the right, at which point the program
changes to a different sequence of frames. Each repetition of the five frames
reverses the order in which the frames are shown so that the complete walk

sequence is an eight-frame sequence as follows: 1-2-3-4-5-4-3-2. Then the

sequence repeats itself.

Figure 4.9 The sheriff's animated frames

Proveit to yourself. Make several copies of Figure 4.9 on a copier. Cut the
images into uniform rectangles, stack them up in the sequence we just
described, and staple them together at one of the edges. Now you have one of

those flip comic books from the 1950s. Flip through the pages and watch the
sheriff take a walk.

65

66 C++ Games Programming

We drew the five pictures of the sheriff with NeoPaint. We started by
drawing the first picture. Then, to build the second frame, we copied the first
and modified it so that the swinging left arm was closer to the body and the
two legs came closer together. In the third frame, we made the arm and legs
straight down. The legs of frames four and five are duplicates of those in
frames two and one, except that we changed the line that defines which leg is
closer to the front of the scene.

There are several other sequences in the game. One sequence has the
sheriff walking in the opposite direction. To build that sequence, we used
NeoPaint to reverse the frame images of framesfive through one. Because the
sheriff carries only one gun, we erased the gun and holster from each of the
framesin the right-walking sequence, and we put a badge on the left side of
his chest.

Other sequences depict the sheriff drawing and shooting in four directions,
reloading his gun, and getting shot from both directions.

Each sprite has its own frames and its own update frequency. The sheriff
gets updated every two clock ticks, or approximately nine times per second,
so it takes about one second for the sheriff to start out with his left foot
forward and take two steps ending with his left foot forward.

Plotting the Two-Dimensional Coordinates
The screen is a two-dimensional plane with an X coordinate and a Y
coordinate. The coordinate ranges are the same as the resolution of the video
mode. Mode X games have X coordinates of 0 to 319 horizontally and Y
coordinates of 0 to 239 vertically.

As a game program displays the frames of an animated sprite, the program
must also provide the screen coordinates where the frameis to be displayed.
The Theatrix coordinate system uses 0/0 as the upper left coordinate and
319/239 as the lowerright coordinate. Sprite frame positions on the screen
are assigned according to where the upper left corner of the sprite image is
positioned, even though that point might be transparent. (See “The
Transparent Regions of a Sprite” later in this chapter.) Therefore, if the sprite
moves around the screen, the game program computes the path and provides
the correct coordinates for the upper left corner of each frame.

CHAPTER 4: Game Building Strategies

A Theatrix game may be computing frames and frame positions for many
sprites for each full-screen display, so the action on the screen can be
complex and the demands on the CPU can be considerable.

Smooth Animation
The sheriff in Figure 4.9 walks along the street shown in Figure 4.1. The

scenery remains static and the sheriff walks. Animating a sprite consists of

telling the video system where in the two-dimensional coordinate system
to paint each frame. The sheriff moves from left to right during this
sequence. To make the walk believable, we plot each position in the first
five frames of the eight-frame sequence so that the toe of the sheriff's left
boot is always in the same X/Y coordinate on the screen. For frames six,

seven, and eight and frame one of the next sequence, the toe of the right
boot is held in the same X/Y coordinate. This procedure gives the sheriff's
walk a smooth, natural appearance.!

Z-Order
When a game has more than one sprite and the sprites’ paths cross, the game
must display the intersecting sprites so that the one closer to the player
passesin front of the one closer to the background. This relationship between
sprite positions is called their Z-order, becauseit reflects each sprite’s
location in the Z axis of a pseudo three-dimensional coordinate system.
However, instead of being a scalar as in a true three-dimensional graphical
system, the Z axis is represented by the positional relationship of the game's
components. The background is at the lowest (most distant from the player)

position in the Z-order, and the sprites are at various Z-order positions
toward the front.

There are no integer Z values analagous to X and Y values. Instead,
Theatrix maintains a list of sprites. The Z-order of a sprite depends on its
position in the list relative to the other sprites. A sprite’s initial position in
the list depends on the order in which the game program instantiates the
sprite object. The last sprite object instantiated has the nearest Z-order.
Figure 4.10 is a screen shot of the Skater game, which uses Z-ordering to
control sprite placement.

Un Tricks of the Game-Programming Gurus (see the Bibliography), Andre LaMothe calls this
technique “animotion.”

67

68 C++ Games Programming

Figure 4.10 Z-order

The skater in Figure 4.10 skates a figure eight around the two stationary
sprites. At first the skater is foremost in the Z-order because he is in front of
the other two sprites. When he makes his first turn to go between the other
two, his Z-order changes to put him in front of the rearward sprite and behind
the forward sprite. When he goes behind the rearward sprite, his Z-order
changes to put him behind both of the other sprites.

A Theatrix game program tells Theatrix to changea sprite’s Z-order in one
of three ways: by putting the sprite at the rearmost Z-order, at the
forwardmost Z-order, or behind the Z-order of a specified other sprite.
Theatrix takes care of the rest.

Perspective
Because Theatrix is not a true 3-D graphical system, you have to manage
certain aspects of the 3-D effect yourself. For example, as the skater moves
around the figure eight in Figure 4.10, the program computes the coordinates
where the skater displays. To suggest a third dimension, the game moves the
skater up the Y axis when the skater is skating away from the player and
down the Y axis when the skateris skating toward the player.

CHAPTER 4: Game Building Strategies

As objects get farther into the distance they appear to get smaller. That
illusion is due to perspective. Observe that the rearmost stationary sprite is
smaller than the forward one, which is smaller than the skater. When the
skater is between the two sprites, then, it should be bigger than the one at
the rear but smaller than the one at the front.

There are algorithms to shrink and expand graphical images to support
perspective in real time, but we do not need to use them for the kinds of

games that we build with Theatrix. Because animation is a function of

selecting the correct frame, proper perspective is a matter of painting or
rendering enough frames to display the sprite at whatever Z-order locations
the game allowsit to occupy. If you are rendering or photographing sprites,
you must position the real or virtual camera far enough away to capture each
frame. If you are painting the sprites with NeoPaint, you should paint the
first set of frames in their largest configuration. Then, using the Scale
command you can make smaller and smaller copies of the frames for the
more distant Z-order images. Scaling pictures down sometimes loses critical
pixels from the details, so you should keep an eye on the results and touch
them up when necessary. Figure 4.11 showsthe skater atits farthest location
away from the player.

Figure 4.11 Sprite perspective

69

70 C++ Games Programming

The Transparent Regions of a Sprite
Sprite images are 256-color rectangular .PCX files of a size appropriate to the
sprite’s role and position on the screen. No matter which technique you use
to build sprites, you must deal with the issue of transparency the same way.
Every sprite image has regions that must be transparent to let the background
show through. For example, all the space around the outer edges of the sprite
and to the borders of its image rectangle must be transparent. If the sprite has
holes, you have to let the background show through them, too.

Transparent regions are marked by color zero—that is, each pixel in a
transparent region must have a palette offset value equal to zero. It does not
matter which actual color is assigned to color zero in the palette—color zero
is the transparent color when Theatrix displays the sprite. Color zero is
usually solid black.

Black backgrounds are easy to make when you use NeoPaint or POV-Ray
to build sprite images. With NeoPaint, you start out with a white background
because it’s easier to see what you're painting that way. When you are
finished, you use the Fill tool to replace the white background with black.
You canstill have black elements in the sprite’s image by assigning black to a
nonzero palette offset.

When rendering POV-Ray sprites, don’t provide any background objects
such as the sky, walls, and floors. The background will be rendered all black.

Creating transparent regions from photographed and scanned sprites is
more difficult but still possible. Even though you use a solid black
background in the photo session, chancesare that some stray ambient light
source will create subtle textures that are not completely black. To do some
touchup, load the .PCX files into NeoPaint and use the Eraser tool to
change rough areas to all black. Then zoom in and touch up the remaining
pixels.

Sometimes there are points of solid black in the image that you do not
want to be transparent. They show up as dots of background bleeding
through when you run the game. This can happen with rendered and
photographed sprites. You have better control over colors when you
manually paint the sprite, but it can still happen if you make a mistake. To
correct for these unintended holes, load the offending frame into NeoPaint
and manually change the holes from color zero to another color in the
palette that is black.

CHAPTER 4: Game Building Strategies 71

How Animation Works in Theatrix
Theatrix manages the animation of a large number of sprites against a
common background. Follow along with Figure 4.12 as we explain how it
works.

Hidden Page Active Page Uisible Page

Image Library: a % wp

Figure 4.12 Animation

When a scene in the game begins, Theatrix saves the scene’s background
scenery image in one of two hidden page buffers and designates that buffer as
the permanently hidden page. Remember from Chapter 3 that Mode X has
one visible page and two hidden pages. The permanently hidden page buffer
retains the scenery image unmodified for the duration of the scene. Theatrix
copies the same scene into the visible page and the other hidden page—

72 C++ Games Programming

which it designates the active page—and makes sure that they are different
physical page buffers. So, to begin, all three pages have the same image, that
of the background scenery, and oneis the hidden page, one is the active page,
and one is the visible page.

As the animation proceeds, the visible page contains what the player is
looking at, the active page is where Theatrix makes its updates, and the
hidden page remains constant with only the scenery in it. Step 1 in Figure
4.12 reflects that condition.

The scene consists of scenery and a list of sprites. Each sprite is an object
instantiated for the scene. Each sprite registers for a refresh rate based on the
18.2/second ticks of the clock. The scene is actually refreshed once every
tick, but the sprites get an opportunity to specify how often Theatrix asks
them to update their frame image and position.

On each tick of the clock, Theatrix tests each visible sprite in the order
that it appears in the scene’s Z-order list. If the sprite’s refresh rate has gone
by, Theatrix calls the sprite to have it specify its frame image and screen
coordinates. The sprite determines from its circumstances in the game
whether there are to be any changes in its frame image and position and posts
these changes to itself.

Now let’s look at step 2 of Figure 4.12. Immediately following the image
and position posting for each sprite, Theatrix copies the sprite’s posted image
from a resident sprite image library to the active page at the sprite’s posted
position. The active page is not visible during this process. At the end of the
loop, the active page contains the screen images for all visible sprites
superimposed on the scenery. This full-screen image represents what is to be
viewed for the next framein the total animation of the scene.

In step 3 of Figure 4.12, Theatrix swaps the active page with the visible
page, and the player is now looking at the current frame for the game.

In step 4 of Figure 4.12, to prepare for the next frame, Theatrix iterates
through the sprites again and erases their previous images from the active
page by copying the positions they previously occupied from the static
hidden page into the active page.

This four-step procedure permits each sprite to independently specify its
next frame and its position based on whatever intelligence you, the
programmer, build into the sprite’s class. Usually, a sprite will maintain a
mode data item that tells it what its current circumstances are. Other parts

CHAPTER 4: Game Building Strategies

of the program—other sprites, perhaps—can cause the sprite to modify its
mode variable. This variable, which you build into the sprite’s class, is the
sprite’s insight into what it should do next. When Theatrix calls upon the
sprite to update its image and position, the sprite uses its mode variable to
determine what to do.

Several sprites in a scene can be modifying their images and positions
independently of one another, and you can have completely random sprite
movements throughout the game. They can watch one another and react
accordingly. For example, when the sheriff in the Shootout game gets within
shooting range of an outlaw, that outlaw takes a shot at the sheriff.

Mouse Cursors
Theatrix supports a small set of mouse cursors. The usual default arrow
points up and left. Theatrix adds hands that point up, down, right, and left
and block arrows that point toward the four corners of the screen. Figure 4.13
shows the Theatrix mouse cursors.

> d A

> § <
Figure 4.13 Theatrix mouse cursors

A game program that uses these cursors can specify any of these standard
shapes, or it can use custom cursor shapes that you build with NeoPaint. A
cursor is a color graphical picture similar to a sprite except that cursors are
always 16 x 16 pixels. When used in a game, a cursor must also specify a hot
spot, which is the relative pixel position of the cursor’s pointer.

73 ¢

74 C++ Games Programming

To use a custom cursor, you first build it with NeoPaint. Create a new file
with 256 colors and a custom resolution of 16 x 16. That's a tiny picture, and
you will have to build your cursor by zooming in and setting each pixel’s
color individually. Set the transparent parts of the cursor to solid black.

After the cursor’s .PCX file is finished, you must translate its color
representation into a C++ source code file that your game makefile compiles
and links. The Theatrix toolkit includes a utility program named GMICE
that reads one or more cursor .PCX files and generates a file of source code
that you compile and link with your program. The GMICE program includes
a table of hot spots that it selects from based on the first two characters of the
PCX file’s name. You will need to modify this table to use the program for
mouse cursors other than the standard ones.

Before the .PCX images for custom mouse cursors can be integrated into
the game program, you must normalize their palettes with the other
graphical elements in the game. Furthermore, if you use the standard cursors
in a game with graphical elements that do not use the default palette, you
must rebuild the standard cursors, normalize those palettes, and treat them
just like custom cursors. That procedure is described in this chapter in the
section titled “Palette Correction.”

The Town game on the included CD-ROM uses the GMICE program to
build source code files from mouse cursor .PCX files that have been palette-
normalized.

Video Clips
Video clips are movie shorts. If you have a video capture board, such as the
Creative Labs Video Blaster, you can hook up to your computer a
CamCorder, a VCR, or any other standard video source to your computer and
generate a video file. You can also create one from graphical tools such as
NeoPaint; use the same animation techniques that you use to animate
sprites and process the resulting frames through one of your tools.

The difference between video and animation is that your game program
itself manages frame image and position during sprite animation, reacting to
the conditions of the game. The motion of a video clip, on the other hand is
predetermined; the clip plays in the background, and it plays an unchanging
sequence of frames.

CHAPTER 4: Game Building Strategies

Theatrix allows you to display a video file in the standard FLC format.
FLC is a formatoriginally defined by Autodesk Animator Pro. An FLC file

consists of header information and frames. The frames are optimized so that
the pixels are compressed and each frame contains only the pixel information
that is different from the frame that precedes the current frame. This
approach allows the minimum storage for the animation sequence and the

minimum processing time to refresh the screen. Each frame has its own
palette information, too.

To add video to your game, you mustfirst build or acquire an FLC file.

Now for the usual caveat. We're sure you're tired of hearing this, but, as with

everything else in a creative production, be reminded of your responsibility to
observe the rights of others and the consequences of ripping off someone
else’s intellectual property.

Building Video Clips with DTA

Among the Theatrix Tools is a shareware program called Dave's . TGA

Animation Program (DTA). For complete documentation on DTA, the
Bibliography lists Morphing on Your PC, by the program’s author, David K.

Mason. The text file with the software on our CD-ROM should get you
going.

We used one video clip in an example game. The Town game on the CD-

ROM superimposes over a scene a video clip as seen through an open door.

The video clip shows a player piano playing and a cat wagging its tail. There

are 13 framesin the clip, and the program repeats the clip as long as you stay
on the scene. We built the frames for the clip with NeoPaint and built the
FLC file with DTA.

Building the frames for a video clip uses essentially the same procedures as

building animated sprites, and either approach would have worked except
that Town is a Myst-like game that moves from static scene to static scene.

Its scenes are not derived from the parts of Theatrix that support animation.

Before the .PCX images for video clips can be built into an FLC file, you
must normalize their palettes with the other graphical elements in the game
as described later in this chapter. Thisis true even if you are using an existing
FLC file. DTA has procedures for extracting and applying a common palette,
and you can use the extracted palette to normalize the rest of the game's
graphics. As an alternative, you can use DTA to extract the individual frames

75

76 C++ Games Programming

to .PCX files, use these frames in the normalization procedure, and rebuild
the FLC file from the normalized .PCX frame files.

Playing Video Clips with Fastgraph
Theatrix encapsulates the operation of playing and stopping a video clip. The
game program tells Theatrix to begin displaying a particular video clip file,
provides the coordinates for the upper left corner of the clip, and specifies
whether the clip is to be played once only or repeated until the game tells
Theatrix to stop playing the clip. Theatrix plays the clip over the top of
whatever sceneis currently being displayed.

Palette Correction
Before the .PCX files for a game's scenery, background, sprites, video clips,
and cursors can be integrated into the game, you must normalize the palettesfor all the graphical elements.

We discussed the problem in Chapter 3. Every graphical element in a video
game can have a different palette. When you mix more than one elementinthe same display and the elements use different palettes, only the ones that
are consistent with the active palette display properly. The others have
strange colors. In our games, the flesh tones are always green if we forget to
normalize the palettes.

Chapter 6 describes the Theatrix utility tools in detail. This discussion
explains the process of palette correction.

Given that you have some number of graphical entities with different
palettes, you first have to derive a common palette from all of them. That
procedure involves three steps.

First, extract palette files from all the graphical elements. Palette files
contain the palette information taken from a .PCX file.

Second, use all these extracted palette files to compute a common palettefile. This procedure finds all the colors in all the palettes and tries to squeezethem into one. For example, if seven .PCX files have the color green in sevendifferent color slots in their respective palettes, the common palette chooses
one slot for green. The object is to get each of the colors in use in all the

CHAPTER 4: Game Building Strategies

palette files assigned to only one slot. The hope is that, altogether, the images
don’t use more than 256 different colors. When they do, the utility program
finds the closest possible match for the excess colors.

Finally, use the common palette file to modify all the original .PCX files so

that they use the common one in place of their originals. This modification
changes the palette offset value for each of the .PCX file’s pixels so that it
points to the correct color in the new palette.

When this procedure is complete, all the raw .PCX files in your game
operate with the same palette.

Sound Effects
Sound effects begin as .VOC files that you install into .SFX libraries. Chapter
6 explains the procedure for building the libraries.

Again, be careful about using someone's copyrighted sound effect. You can
download many quotes from movies and TV shows, but don’t use them in

your games. Find someone who can imitate Bogie if you want his voice.

CD-ROMs are available with sound effects that you are permitted to use.

Most computer supply stores have a rack of CD-ROMs where you are likely
to find such material.

Recording Sound Effects
The best choice is to make your own noises and voices. You'll need a Sound

Blaster or another sound card that supports recording. For voices you need a

decent microphone. Radio Shack has several that work well.

You can also go out into the wilderness and record the birds and bees and
make VOC files by patching your tape player into the line input jacks on the
Sound Blaster.

Beyond that, all you need is your imagination. The Myst guys tell about
how they made clock chimes by banging two wrenches together, adding echo
effects, and changing the playback rate of the sound. They got water gurgling
sound effects by flushing the company commode.

Your sound card comes with a recording utility program. As an alternative,

you can use the Blaster Master shareware program from the included CD-

77

78 C++ Games Programming

ROM. It is particularly convenient if you are going to convert from other
sound file formats or make special effects enhancements to your sounds.

Blaster Master supports a numberof sound effects enhancements. You can
speed up or slow down the playback, add reverberation, and reverse the
playback, just for starters. There are many other things you can do with asound effects waveform.

Playback with CT-VOICE or DIGPAK
Theatrix uses one of two sound drivers to play back sound effects. Sound
Blasters comes with a driver named CT-VOICE.DRYV. If the player of your
game has that configuration and has properly set the SOUND and BLASTER
environment variables, Theatrix plays the sounds back correctly.

Theatrix also uses DIGPAK, a commercial sound driver system that
supports many other sound cards. Chapter 11 describes DIGPAK in moredetail. You can use DIGPAK in your own games, and you can distribute the
driver with your games free without licensing concerns, but if you are going
to sell your games and distribute DIGPAK with them, you must pay a one-
time nominal license fee ($500) to the author.

DIGPAK comes with a setup program that the user runs to generate the
correct copy of the sound driver. The sound driver is named
SOUNDRV.COM, and Theatrix loads and uses itif it is there.

Music
Theatrix plays MIDI music files only if the player has the commercial
MIDPAK music driver. Chapter 11 describes MIDPAK in more detail. You
can use MIDPAKin your own games, and you can distribute the driver with
your games free without licensing concerns, but if you are going to sell your
games and distribute MIDPAK with them, you must pay a one-time nominal
license fee ($500) to the author.

The same setup program that builds the DIGPAK driver also builds the
MIDPAK drivers. There are three files, and all of them must be available tothe Theatrix game program at startup time. The files are named
MIDPAK.AD, MIDPAK.ADV, and MIDPAK.COM.

CHAPTER 4: Game Building Strategies

Recording Music with MT

Chapter 3 discussed the creative side of making MIDIfiles. The included CD-
ROM contains a shareware sequencer program, named MT, that runs on a PC
with a music card that implements the Roland MPU-401 protocols. The
Sound Blaster 16 is one such card.

You can use the MT sequencer to lay down as many as 16 tracks and
produce multichannel MIDIsongs, selecting from all 128 instruments in the
standard MIDI instrument list.

Playing Back Music with MIDPAK
Theatrix does not have its own MIDI library format for songs. MIDPAK uses
a format with the .XMI extension. MIDPAK comes with a utility, named
MIDIFORM, that you use to build an .XMIfile from a set of MIDIfiles.

The game program instantiates an object of the MusicHand class. A game
typically has only one .XMI file, which is treated as the musical score for the
whole game. The score contains individual songs that can be played
whenever the game needs music. A game can start a song, stop a song, and
test to see whether a song is still playing. The music plays in the background
asynchronously and does not affect the rest of the program.

79

Theatrix, A C++
Class Library

“Generally speaking, the American theater is the aspirin of the middle classes.”
Wolcott Gibbs

This chapter describes Theatrix, a C++ class library from which you build PC

game applications. You will learn about:

© The Theatrix metaphor
® Class hierarchies
© Hands
© Cues
© Directors

81

82 C++ Games Programming

The Theatrix Metaphor
Theatrix uses a theatrical production metaphor to provide an easy and
intuitive way for us to think about our task of building games. The paradigm
also provides terminology that we can use to communicate.

Games written with Theatrix use a theatrical production as a model. In a
play, the director coordinates a cast of actors, stagehands, and technicians to
present a performance. Each member of the crew has specific tasks to
perform for the play to be a success. Some members, such as actors, are
visible to the audience, whereas others, such as stagehands, are not.

Timing is important in a play. The director cues members of the crew
whenit is time for a member to perform a task. Sometimes, a cast or crew
member takes cues from the actions of others instead of directly from the
director.

This concept has stood the test of centuries and works well for plays. What
about games though? Is it possible to describe a game using these ideas? Sure

; it is. All the games and demos in this book are written using the theater: model. Remember, however, that the metaphor is only a model and not a
strict set of rules. The metaphor makesit easier to think about a game; use it
to an extent that you find comfortable.

Theatrix Class Hierarchies
Theatrix consists of two class hierarchies: one that encapsulates your gameand another that encapsulates all the graphical, musical, and vocal
components of your game.

The Theatrix Class
Figure 5.1 shows the class hierarchy within which you encapsulate the
components of a game.

CHAPTER 5: Theatrix, A C++ Class Library 83

Theatrix

Game Application

Figure 5.1 Encapsulating the game

The Theatrix class in Figure 5.1 encapsulates the controls needed to run a

game. The class manages events and message queues, and it initializes and
shuts down system components such as timers, sound and music generators,
the joystick, the mouse, and so on.

The Game Application bubble in Figure 5.1 represents your game program.
It is a class named by you and derived from the Theatrix class. It contains
data members that are objects and references to objects of classes derived
from the Theatrix class library (discussed next) that you need to run your
game. It can also contain anything else specific to the game itself. We will
show you soon what this class lookslike in a real program.

The Theatrix Class Library
Figure 5.2 is the Theatrix class library. To build a game, you derive
specialized classes from these classes, and, in some cases, you instantiate
objects of these classes. These classes implement the Theatrix metaphor.

C++ Games Programming

Director

VocalHand

rertormer)

SceneryDirector

Figure 5.2 The Theatrix class hierarchy

MusicHand

VideoDirector

The five levels in Figure 5.2 represent the five levels of abstraction at which
you can design your game. The highest level of abstraction is shown at the
bottom of the hierarchy, and the lowest is shown at the top.

Most of the classes in Figure 5.2 are designed to be base classes. You build
your games by deriving from them. The MusicHand class, however, is
designed to have an object of the class instantiated. Any game that plays
music does so through one instance of the MusicHand class.

As you work at lower levels of abstraction, you must understand and use—
and in some cases, provide—more of the details of implementation. The
higher levels of abstraction encapsulate those details, When you work at
higher levels you can ignore the details of the lower levels.

The example games on the included CD-ROM work at different levels of
abstraction. Table 5.1 lists the games and shows where they fit on the
chart.

CHAPTER 5: Theatrix, A C++ Class Library 85

Table 5.1 Levels of abstraction of example games
Level of

Example Game Abstraction
—_—Textmode

Planet

Theatris

Marble Fighter

SkyScrap

TicTacToe

Mouse

Town

Skater
Oo

on

DD

DOW

WLW

WL

»w

Shootout

A game can use the details from several levels of abstraction. For example,
the Shootout game, implemented at level 5, uses level 4's SceneryDirector to

implement introductory screens and level 2's MusicHand class to play music
selections from a musicalscore.

The Hand Class
You do not usually directly derive anything from the Hand class, although it

is possible. This class hosts and manages the events and messages that game

program components use to communicate between themselves and the

system. Usually your program derives classes from the classes that derive
from Hand.

The Hand class allows its derived objects to request cues, which are

messages that the system sends to Hand objects. Messages are usually
associated with system events such as keystrokes, but they may also be

messages posted by game components to be received by Hand objects that
register for the messages.

86 C++ Games Programming

The CUELIST Table
A derived Hand class requests cues for its objects by defining a CUELIST
table, which specifies the cues to be received and the class's memberfunctions to receive them.

The class declaration includes a DECLARE_CUELIST statement thatdeclares the existence of a CUELIST table for the class: .

class MyHand : public Hand {

lls,
DECLARE_CUELIST

1:

Then the class definition includes the CUELIST table:

CUELIST(MyHand)

KEYSTROKE('a',on_key_a)
TIMER(1,on_timer)

ENDLIST

The CUELIST statement specifies that a table of cues follows. The ENDLIST
statement terminates the table. The CUELIST statement’s parameteridentifies the class for which the cues in the list are being registered, which
means that the CUELIST statement must be within the scope of the class
declaration. A CUELIST declaration generates a memory-resident table, so
you should put it in the .CPP source code file of your program rather than inthe header file that declares the class.

The CUELIST table just shown includes a KEYSTROKE entry that
registers objects of the class to receive a keystroke cue. It also includes aTIMER entry that registers for a cue based on the system clock.

The on_key_a and on_timer parameters to the KEYSTROKE and TIMER
statements are member functions that are called callback functions because
the table entries pass to the system the addresses of functions to be called.
Whenever the user presses the a key, for example, the system calls the
registered class’s on_key_a member function, once for each instantiated
object of the class. The on_key_a function defines the object’s behavior whenthe a key is pressed. The callback function might be defined like this:

CHAPTER 5: Theatrix, A C++ Class Library 87

void MyHand::on_key_a()
{

print_string(“"the 'a’ key has been pressed!");
}

There are nine types of cues. Table 5.2 lists the cues and gives examples of

their entries in the CUELIST table.

Table 5.2 CUELIST events
Event CUELIST Entry

Keystroke KEYSTROKE('a',on_key_a)

Hotkey pressed HOTKEY(SCAN_CTRL, on_ctrlkey)

Clock tick TIMER(1, on_fimer)

Message posted MESSAGE(on_message)

Mouse click MOUSECLICK(LEFTMOUSEBUTTON, on_mousebufton)

Mouse movement MOUSEMOVE(on_mousemove)

Joystick moved JOYSTICKMOVE(on_joystickmove)

Joystick button JOYSTICKBUTTON(on_joystickbutton)

Network packet NETPACK('X', on_netpack)

Callback Function Signatures
The callback function for each cue type has its own function signature
depending on what the system passes as arguments. The class and callback

identifiers are up to you, but callbacks should have return types of void and,

if you are expecting to use the arguments, parameter lists that match the

signatures. The discussions that follow identify the signatures for the
callback functions.

Callback Functions
A callback function must be a member function of a Hand class or of a class

derived from Hand. When the system calls a Hand callback function, it

88 C++ Games Programming

passes data arguments depending on which cue is being sent. Table 5.3 liststhe cues and the prototypes for their associated callback functions.

Table 5.3 Callback function prototypes
Event Callback Prototype Arguments
Keystroke void cb(int key) ASCII keystroke
Hotkey pressed void cb(int scancode) Keyboard scan code
Clock tick void cb()
Message posted void cb(int p1, long p2) App-dependent values
Mouse click void cb(int x,int y,int b) Coordinates, Button
Mouse movement void cb(int x.int y,int b) Coordinates, Button
Joystick moved void cb(int x, int y) Coordinates off center
Joystick button void cb(int x, int y) Coordinates off center
Network packet void cb(int pkt) Packet byte value

These prototypes indicate what the system passes when it calls the callbackfunctions. You can use a callback function without the parameters if thefunction does not need them. The CUELIST table uses C++ casts to build itstable, so there are no compile-time checks for parameter numbers and types.For example, a keystroke callback function does not need the keystroke valueif it is registered for only one cue, so it can be declared without anyparameters. Be careful to specify only those parameters that the systemactually sends. The casting mechanism effectively bypasses C++’s static type-checking mechanism for function parameters, and you could get into trouble
by expecting something quite different than what the caller passes.!

KEYSTROKE

A keystroke cue is sent whenever the key associated with the cue is pressed.
Keystrokes are useful, but they have a limitation. Keystrokes use the BIOS
keyboard mechanism, which means that only one keystroke can be detected
at a time, even if the user is pressing two keys.

Ipurists might be offended by this apparent override of the type-safety built into the C++language. Perhaps they are right, but this mechanism has been used in such class libraries as theMicrosoft Foundation Classes for years.

CHAPTER 5: Theatrix, A C++ Class Library

The keystroke cue callback function has this signature:

void ClassName::callbackname(int k);

The parameter’s argument is the key that was pressed. If this callback is

registerd to be cued for only one key, then the parameters argument will
always have that one value. If, however, you use one callback to handle
multiple keys, you will haveto test the value of ‘k’.

HOTKEY

Hotkey cues bypass BIOS and read the keyboard directly, so multiple keys
can be detected at the same time. Hotkeys are great for intense arcade action,
but it is difficult to write a menu using hotkeys because they often report
multiple cues even if the user pressed the key once. Hotkey cues specify
keyboard scan codes rather than ASCII key values. The header file named
scancode.h provides global symbols for keyboard scan codes and for ASCII

key values for keys such as the Esc key that do not have character constant
literal expressions in C++.

The hotkey cue callback function has this signature:

void ClassName::callbackname(int k);

Like keystrokes, hotkey callbacks take a single, integer parameter, which is

the keyboard scan code currently detected as being pressed.

TIMER

Timer cues are a vital part of any arcade game. The first argument in the
TIMER entry specifies the number of cues sent each second. Because the
system’s hardware timer runs at 18.2 ticks per second, the argument’s value
is approximate.

The system sends timer cues at a regular rate, regardless of the processor's
speed. Games use timer cues to float objects across the screen or to maintain
a constant speed for bullets, rockets, and so on. The timer cue also paces the
frame refresh rate of animated sequences.

The timer cue callback function has this signature:

void ClassName::callbackname();

Timer callbacks take no parameters.

89

90 C++ Games Programming

MESSAGE
Message cues are different from the other types of cues. They are sent by a
component of the game rather than in response to an event. Messages allow
the Hand objects in your game to communicate. When a Hand object posts a
message, other Hand objects that have registered for the message are cued.
Messages may have data values associated with them.

The message cue callback function has this signature:
void ClassName::callbackname(int msg,long data);

Message callbacks have two parameters. The first is the message that was
posted. The second parameteris the optional data value that can be sent
along with the message.

MOUSECLICK

|
Mouse click cues are sent whenever either button on the mouse is pressed.
The mouse click cue callback function has this signature:

void ClassName::callbackname(int x,int y,int b);
| Mouse click callbacks are sent three integer parameters. The first two

parameters are the X/Y location of the mouse on the screen at the time of the
click. The third parameter is set to either LEFTMOUSEBUTTON or
RIGHTMOUSEBUTTON, depending on which button was pressed.

MOUSEMOVE
Mouse movement cues are sent whenever the player moves the mouse. The
mouse movement cue callback function has this signature:

void ClassName::callbackname(int x,int y,int b):
Mouse movement callbacks are sent three integer parameters. The first two
parameters are the X/Y location of the mouse on the screen at the time of the
click. The third parameteris set to zero if no button is being held down orisset to LEFTMOUSEBUTTON or RIGHTMOUSEBUTTON if a button is
being held down. Programs can use the button parameter to implement
mouse drag operations.

CHAPTER 5: Theatrix, A C++ Class Library 91

JOYSTICKMOVE
Joystick movement cues are sent whenever the joystick is positioned away
from the center position. The joystick movement cue callback function has
this signature:

void ClassName::callbackname(int x,int y);

Joystick movement callbacks are sent two integer parameters indicating the
distance from the center position. A negative x value indicates left of center;
positive x indicates right of center; negative y indicates below center, and
positive y indicates above center.

JOYSTICKBUTTON
Joystick button cues are sent when a joystick button is pressed. The joystick
button cue callback function has this signature:

void ClassName::callbackname(int x,int y);

Joystick button callbacks are sent the same two integer parameters that
joystick movement callbacks receive.

NETPACK

Network packet cues are sent when Theatrix reads a packet from the serial

port. Network packets are present only in games that use serial port
communications. The network packet cue callback function has this
signature:

void ClassName::callbackname(int p);

The single parameteris simply the value that was sent across the serial cable.

Requesting and Stopping Cues During the Game
A Hand requests cues either with the CUELIST table or by calling member
functions that make the requests at runtime during the course of the game.
The CUELIST table establishes an initial list of registered cues when the
game begins.

92 C++ Games Programming

If your game has a Hand that requests and stops cues during the course of
the game, you can use Hand member functions that perform those
operations. Table 5.4 lists the Hand member functions that request and stop
cue callbacks during the game’s execution.

Table 5.4 Cue request and stop functions
void request_keystroke_cue(int key,callback);
void stop_keystroke_cue(int key,callback);
void request_hotkey_cue(int scancode, callback);
void stop_hotkey_cue(int scancode, callback);
void request_timer_cue(int rate, callback);
void stop_timer_cue(int rate, callback);
void request_message_cue(int msg, callback);
void stop_message_cue(int msg, callback);
void post_message(int msg,long data);
void request_mouseclick_cue(int b,callback);
void stop_mouseclick_cue(int b,callback);
void request_mousemove_cue(callback);
void stop_mousemove_cue(callback);
void request _joystickbutton_cue(int b,callback);
void stop_joystickbutton_cue(int b, callback);
void request _joystickmove_cue(callback);
void stop_joystickmove_cue(callback);
vold request_netpack_cue(int,callback);
void stop_netpack_cue(int,callback);

Level 1: Directors and Hands
Level 1 in Figure 5.2 is the lowest level of abstraction for a Theatrix game
program. Game-dependent classes at this level derive from the Director and
Hand classes. Nothing at this level supports graphics, sound effects, or
music. Level 1 will launch a game program and manage events and cues.

CHAPTER 5: Theatrix, A C++ Class Library

The Director Class
The Director class implements objects that control the running of the game.
A game may declare many Director objects, usually of classes derived from
Director, but only one Director object is in control of the game at any given
time.

Stopping the Director
A game cannot go on forever, so there must be a way to stop it. A Hand
object calls stop_director to terminate the Director object that directs its
activities. If the Hand is itself a Director, it terminates itself by calling the
stop_director function.

When the terminated Director object is the only Director in a game,
stop_director terminates the game. You learn later how games with multiple
directors pass control among one another.

Level 2: MusicHand and VocalHand
Abstraction level 2 derives classes from Hand. VocalHand provides sound
support, and MusicHand supports playing selections from a musical score.
Contemporary games do not often use text mode displays with music sound
effects, so we do not include demo games at this level. If you have such
requirements, then, by all means, derive from VocalHand and work at the
second level of abstraction. We have chosen not to do that. Two demos—
Town and TicTacToe—derive classes from VocalHand and use objects of
those classes to play sound clips.

The MusicHand Class
Theatrix provides support for music in games with the MusicHand class.
MusicHand reads .XMI files, which are files that can store multiple MIDI
files. The interface is simple. MusicHand takes the name of an .XMIfile as a
parameter to the constructor:

musichandptr=new MusicHand("tunes.xmi");

93

94 C++ Games Programming

The file represents the game’s musical score. When the time comes to play a
selection from the score,a call to the MusicHand object can be made:

musichandptr->play_music_clip(clip);

The clip argument in the play_music_clip function call is an integer that is
relative to one. It must be greater than zero and less than or equal to the
number of clips in the .XMI library that was specified as an argument to the
MusicHand constructor. If a previous selection is playing, this function stops
that one and starts the new one.

To ask the MusicHand object whether it is still playing a selection from
the score, call the music_clip_is_playing member function:

while (musichandptr->music_clip_is_playing()) {

// do something while music is playing
}

To tell the MusicHand object to stop playing a selection, call
stop_music_clip:

musichandptr->stop_music_clip(); // current selection stops
The is_conducting member reports whether MusicHand detected a sound
card driver when the program started.

if (musichandptr->is_conducting()) {

// music is supported by this game environment

The VocalHand Class
VocalHand loads .SFX libraries, which are files of sound effects. .SFX libraries
contain multiple sound clips, provided in the .VOC format. A game program
can derive from VocalHand or instantiate a VocalHand object, although
many games will use the Performer class, which is derived from VocalHand.

The VocalHand constructor accepts a pointerto the director for which the
object is running. If you omit that argument, the constructor builds the

CHAPTER 5: Theatrix, A C++ Class Library 95

object with no associated director, and the class may not have a CUELIST

entry or request and stop cues with function calls.

Following is a small class that derives from VocalHand to implement
sound effects for a game.

class SoundTech : public VocalHand {

char *sfxfile;
void initialize()

{ Toad_sfx1lib(sfxfile); }

public:
SoundTech(char *sfx)

{ sfxfile = sfx; }

iH

The call to VocalHand::load_sfxlib tells the object the name of the .SFX

library to load. All the sound clips that can be played by the VocalHand
object are in that library. A game can instantiate an object of such a class, as
the following example shows:

static SoundTech *soundtech;

soundtech = new SoundTech("town.sfx");

The game that uses such a class can then call VocalHand member functions
through objects of the derived class, as shown here:

soundtech->play_sound_clip(clip); // play a sound clip
Io...
soundtech->stop_sound_clip(); // stop the sound clip
Il wes

if (soundtech->sound_clip_is_playing()) // test if clip is playing

// sound clip is playing

The clip number argument in the play_sound_clip function call is an
integer that is relative to one. It must be greater than zero and less than or

equal to the number of clips in the .SFX library that was loaded for the
VocalHand object.

96 C++ Games Programming

Level 3: Performers and VideoDirectors
Abstraction level 3 derives classes from VocalHand and Director. Performer
provides basic graphics support, and VideoDirector provides video page-flipping support.

The Performer Class
Performer, which supports graphics, is derived from VocalHand, which is
derived from Hand. In addition to being able to request cues, Performer loads
.GFX libraries, which are files that contain images that you provide in the
form of .PCX files. Once Performer loads a .GFX library, it can display the
images inside the library at any time.

-GFX and .SFX libraries are created using utility programs from the
Theatrix toolkit. Chapter 6 explains how these tools work.

The VideoDirector Class
VideoDirector is derived from Director. VideoDirector supports page-flipping
animation, which uses a hidden video page to assemble a scene and then
displays it instantly so that the user sees only the finished page.

Level 4: SceneryDirectors
Until now, our discussion has related mostly to the action part of the game.Few games, however, jump immediatly into the action. Most of them have
an introductory screen, and many have a trailer screen that comes up after
the game is over. Most games have a menu display, too, which allows you to
choose from selections such as whether to play another session, get help,
change options, exit the game, and so on.

At its fourth level of abstraction, Theatrix implements the
SceneryDirector class, which implements scenery without animation.

The SceneryDirector Class
Dislaying an information screen seems simple enough. Display a .PCX file
and wait for a key. That’s about all there is to it, but a few subtleties should

CHAPTER 5: Theatrix, A C++ Class Library 97

be considered. For instance, how should the image be displayed? If

displayed on the visual page, the image appears on the screen a line at a

time. (It appears quickly, but a line at a time nonetheless. On a slow

machine, the user will see this effect.) This might be a desired effect, but it
usually makes the game appear to run slowly. An alternative is to load the

image into the hidden page and do a page swap so that the image appears all
at once. Also, which keys should be used as an acknowledgment? Any key
or only certain ones?

The SceneryDirector class offers one solution. SceneryDirector is designed

to be used as a base class:

class MyIntroPage : public SceneryDirector
{

public:
MyIntroPage() : SceneryDirector("myintro.pcx") { }

}

By creating an instance of MylIntroPage before any other Director objects,

you've added an intro page. SceneryDirector can be used to display intro

screens, help screens, and trailer screens. The demos on the CD-ROM—such

as Marble Fighter, Theatris, and Shootout—all use SceneryDirector, which
displays the image by using a page-swap and then waits for the Enter, space
bar, or Esc key to be pressed before it continues.

Level 5: Players and SceneDirectors
Theatrix provides two classes at level 5 that encapsulate the operations of

video pages and bitmaps. These classes are Player and SceneDirector. Player
is derived from Performer, and SceneDirector is derived from
SceneryDirector.

These two classes make it easy to animate multiple sprites
simultaneously. At first glance, animating two sprites doesn’t seen any more
complicated than animating one sprite as in the Planet demo—but it is. With

single sprite animation, a scene can be updated simply by erasing the old

image (with a portion of the background image) and drawing the new one.

This technique doesn’t work with two sprites because the sprite that is

98 C++ Games Programming

moving might overlap the sprite that is not moving, so it would erase part orall of the second sprite. In short, to animate two or more sprites, the updating
must be coordinated.

Anotherfacet of multiple sprite animation involves Z-order, or the abilityof one sprite to consistently appear above or in front of another sprite. This
requires the sprites to be updated in a specific order. Both of these issues areaddressed and taken care of by the SceneDirector and Player combination.

Theatrix
User's Guide

“Science is the guide of action.”
William Kingdom Clifford

This chapter describes the utility programs that accompany and support the
Theatrix C++ class library. You will learn about these subjects:

© Graphics file libraries
© Sound effects libraries
© Palette management utilities
© Mouse cursors
© Miscellaneous utilities

99

100 C++ Games Programming

Managing GraphicsFile Libraries
GFX libraries are files that contain sprites and other bitmaps. Usually each
sprite has its own GFX library, which contains the bitmaps that define all the
poses that a sprite can assume. Other bitmaps are props, such as doors that
open, numeric displays for showing the game's score, and any other bitmap
that the game needs to display over the scenery.

GFXMAKE
Graphics bitmaps are supplied to GFXMAKE in the form of .PCX files. There
are two ways to use GFXMAKE: The file names can be included on the
command line, or a “list file” can be supplied that contains a list of the .PCX
files to be included.

Let’s pretend that we are going to write a game in which a character moves
around the screen in four directions. We'll need four bitmaps of our character:
one with the character moving up, one moving down, one moving left, and
one moving right. The construction of the images is up to you. You might
want to draw them in a paint program, render them with a 3-D package, or
capture them from a picture. Whatever your source is, you need to produce
each image in the .PCX format. Almost any format can be converted to the
PCX format using Image Alchemy, which is included on the CD-ROM."

Once you have the four .PCX files of the character moving in four
directions, producing a .GFX file is simple. Place the four images in the same
directory, and then, in that same directory, execute this command:

GFXMAKE test.gfx up.pcx down.pcx left.pcx right.pcx
Make sure that GF XMAKE is in the command path. If all goes well (and
you've named your .PCX files up.pcx, down.pcx, and so on), the GFXMAKE
will create a .GFX file called TEST.GFX, which contains four images. Then,
in your game, in a Performer-derived initialize member, include this line:

The version of Image Alchemy included on the CD-ROM is a demo version, which can convert
images of 640 x 480 and smaller resolution. Refer to the Image Alchemy documentation for
ordering information.

CHAPTER 6: Theatrix User's Guide

MyPerformer::initialize()
{

tl wis

load_gfx1ib("test.gfx”);
Id ss

}

Now your Performer will be able to use the show_image member:

show_image(x,y,1);

This line would display the first image (up.pcx) of the TEST.GFX file with its
upperleft corner located at x/y. Likewise, using 2 as the last parameter would
display the second image (down.pcx).

GFXSHOW
GFXSHOW reads .GFXfiles and displays the images. When you're creating
the .GFX file, this utility can be helpful. Had we actually created our
TEST.GFX file, we could then type:

GFXSHOW test.gfx
The contents of our new .GFX library would be displayed. If the images in
test.gfx use a palette other than the standard VGA palette, you can supply
another parameter after the .GFX libarary:

GFXSHOW test.gfx test.pal

SHOWPCX
SHOWPCX displays the .PCX file you supply on the command line. Unlike
most viewers, SHOWPCX displays images in Mode X.

Managing Sound Effects Libraries
Sound effects libraries contain sound clips built from .VOC files. Usually,
each sprite has a library of its own voices and sound effects. A base class
often manages the sound effects for its derived sprites.

101

102 C++ Games Programming

SFXMAKE
SEFXMAKE works like GFXMAKE except that SFXMAKE takes .VOC files as
input and creates .SFX files. The .VOC files can be supplied on the command
line or in a list file. Let's say that we have a game with two sounds: a gun
firing and an explosion. Although the list file syntax is usually used if you
have more than two entries, let’s useit so that you can see how it works.

First, we prepare the list file:

shot.voc
explode.voc

Let's call the file sounds.txt. In the directory that contains this file and the
two .VOC files, type:

SFXMAKE sounds.sfx @sounds.txt

Now you can load the file in your game in much the same way you loaded
the .GFX library in the preceding example. In a VocalHand-derived class,
place this code:

void MyVocalHand::initialize()
{

fly
load_sfx1ib(”sounds.sfx");
felis

}

In a callback in that same class, you can play the gunfire sound with this
command:

play_sound_clip(1);

Specifying 2 as the parameter would play the explosion.

SFXPLAY
Like GFXMAKE, SFXMAKE has a companion utility that you can use to
make sure that your library has been assembled properly.

CHAPTER 6: Theatrix User's Guide

The command

SFXPLAY sounds.sfx
allows you to play each sound by entering the number of the sound clip.

Palatte Management Utilities
It’s important to understand palettes, because you must deal with them in
order to display images that use colors other than the standard VGA colors.
We will discuss palettes and everything that you need to know to get around
them, but we will not worry about every detail of the VGA hardware.

We have been using 256-color modes. This means that 256 colors can be
displayed together at the same time on one screen. The modes in question
are capable of displaying virtually any color but can deal with only 256 at a
time. When you first put the VGA adapter into Mode X, 256 colors are
available. Although these default VGA colors can be used to accomplish
quite a bit, they are limited, especially when it comes to displaying rendered
pictures or scanned photographs.

You can tell the VGA card to use other colors instead, but managing 256
colors is more than most people want to do. The alternative is to use the
palette tools documented here to do the management for you. This
technique, if used properly, frees you from having to worry about each color
entry but allows you to make full use of the 256 color modes. Follow these
steps:

1. Produce a background image .PCX file. This image should fill the
whole screen (320 x 240 for Mode X).

2. Produce the individual characters for the scene (also in .PCX format).
3. Extract a palette from the background image using GETPAL (discussed

next).
4. Choose one or two sample shots of each character from the game and

extract their palettes using GETPAL.
5. Create a master palette with GENPAL (discussed in this chapter),

using as input the palettes you extracted from your background and
characters.

103

104 C++ Games Programming

6. Force all the .PCX files (the background and all images for the
character) to use the master palette. This is accomplished with
CVTPAL, which will be discussed later in this chapter.

7. Create the desired GFX library using the converted .PCX files. This is
done with GFXMAKE.

8. Use the converted background in the game with the show_pcx
member. The palette in the background .PCX image will be installed
into the VGA memory automatically.

Now you can display the background image with the show_pcx member of

VideoDirector and then display the .GFX images at will.

GETPAL

GETPAL extracts the palette from a .PCX file. Each .PCX file contains its
own palette. Utilites such as CVTPAL and GENPAL (which we will discuss
next) take palettes as input, so it is necessary to extract the palettes from
PCX files. This is the job of GETPAL. GETPAL is used this way:

GETPAL picturel.pcx
This command would cause GETPAL to create a palette file called
picturel.pal, which would contain an ASCII list of the palette entries. If you
don’t want the palette output to have the same name as the input .PCX, then
include the desired name after the PCX:

GETPAL picturel.pcx pall.pal
The resulting palette files can be used as input for CVTPAL, GENPAL or
NeoPaint.2

CVTPAL

CVTPAL installs a new palette in a .PCX file. Using GENPAL, a palette is

generated that contains the colors you want to use. The problem is that now
you have a number of .PCX files with random palettes but only a single

2Use care if you decide to manipulate the palette with NeoPaint. NeoPaint forces color 0 to
black and color 255 to white.

CHAPTER 6: Theatrix User's Guide

palette file. CVTPAL can be used to convert the palette of each .PCX file to
the new palette. For example:

CVTPAL picturel.pcx pall.pal
This command causes CVTPAL to replace each pixel of picturel.pcx with the
closest match it can find based on the new palette found in pall.pal. In order
words, CVTPAL normalizes the image found in picturel.pcx to the palette
found in pall.pal. You should use the palette you create with GENPAL to
normalize all the .PCX files in your game. Once these .PCX files have been
packaged into .GFX libraries, all the images can be displayed on the same
screen at the same time without any palette problems.

GENPAL
GENPAL merges several palettes into one palette, eliminating duplications.
The command looks like this:

GENPAL 0 first.pal second.pal third.pal
This command produces a master palette called new.pal, which is the result
of merging the three palettes listed. The zero (the first parameter) is the
tolerance level. Zero means that GENPAL will omit only exact color
matches. Sending 1 means that GENPAL will omit exact matches and
matches that are off by only 1. The higher this number, the more matches
GENPAL will find. This lets you tune GENPAL to produce a palette as close
to 256 as possible (larger palettes render better graphics). GENPAL reports
how many colors are present in the master palette. You can include as many
palettes as you like on the command line (until you excede DOS’s 128-
character limit).

MakingMouse Cursors
Theatrix comes with some mouse cursors already defined. These are fine for
general use, but you can define your own mouse cursors with the utility
discussed in this section.

105

106 C++ Games Programming

GMICE
The GMICE utility program allows you to generate the C++ arrays that
define custom mouse cursor shapes from .PCX files. You begin by defining
your mouse cursors as 16 x 16 bit .PCX files with 256 colors.

Next, you determine the cursor’s hot spot, which is the point of focus of
the cursor. The hot spotis the pixel coordinate within the cursor image that
is at the screen coordinate that gets reported to the program for the mouse
coordinates when the cursor is moved or clicked.

GMICE has a table of hot spots already defined:

[hisses hotspot table
static struct hs {

char *fn;
int x; y;

} HotSpots[] = {

CR LRY 0,01)
{URES 15, 1a,
{ “DN”, 14, 15},
{="upr.- 14. b,

{UES 0, },
LOSUREL 1501.3,

{ "LR"; 165.15 4%,

{ol 06k,
{ARENS 500 T,
{ "DEY 10,103,
{ 0, 0, 0}

bs

GMICE relates the two-letter tokens in the table to the first two characters of
the .PCX file’s name and uses that vector to select the X and Y values for the
hot spot. To use otherfile name conventions or different hot spot values, you
must modify this table in GMICE.CPP and recompile the utility program.

To run GMICE, name the output file followed by the .PCX files on the
command line. You can use actual file names or names with wildcards, or
you can specify a list file by using the @ prefix. Here is an example:

GMICE mice.cpp *.pcx

GMICE producesafile of source code that you compile along with your game
program. Here is an example of part of the table that GMICE produces in the
source code file:

char UPCURSORL] = { 14, 0, // hotspot x/y

CHAPTER 6: Theatrix User's Guide

255,255,255,255, 255,255,255, 255, 255, 255, 255, 255, 255,
255,255,255,255, 255,255,255, 255, 255, 255, 255, 255, 255,
255,255,255,255,255,255, 255, 255, 255, 255, 255, 255, 255,
255,255,255,255,255,255,255, 255, 255, 255, 255,
255,255,255,255,255,255,255, 255, 255,

255,255,255,255, 255,255, 255,
255,255,255,255, 255,255,255,
255,255,255,255,255, 255,255,
255,255,255,255,255, 255,255,
255,255,255,255,255, 255,255,
255,255,255,255, 255,255,255,
255,255,255,255, 255,255,255,
255,255,255,255, 255,255,255,
255,255,255,255, 255,255,255,
255,255,255,255,255,255,255, 255,

255,255,255,255, 255,255,255, 255,
0,

oO

©

oOo

o

-

ee

ow

-

-

-

-

OO

Oo

ocoocoocooco

ooo

0,

oO

oOo

o

-

-

-

-

OOo

ococoocoocooo

oc

oo

0,

oc

©

©

.

eo.

-

-

-

-

-

OO

Ooo

ococooocoocooc

oo

oc

o

0,

oo

Oo

oo

-

-

-

-

-

OO

Ooo

ocooocoocooc

ooo

0,

oOo

oo

-

-

-

-

-

OOO

ococooocoocoo

oo

0,

oO

©

oo

OC

Oo

ocooooo

oo

oo

0,

oo

oOo

©

OC

Oo

ooo

ocoo

oo

oo

0,
0,
0,
0,
0,
0,
0,
0,
0 ’

0,
0,
0,
0,
0

63,
63,
63,
63,
63,
63,
63,
63,
63,

0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0

63,
82,
63,
82,
82,
82,
82,
82,
63,
63,
63,

0,

oO

Oo

o

-

-

-

-

OO

Ooo

ococoocooooc

oo

o

OC)

©

©

©

CO

®

®

OO

&

O&O

&

O&O

W

MND

ND

NDMP

W

WWW

0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0

0,

oOo

oOo

oo

OC

Ooo

ococoocooooc

ooo

SS

oO

oO

Ww

ww

63,

0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0

63,
82,
82,
82,

82,

©

OO

oo

-

-

-

-

-

-

-

-

-

-

-

OC

Ooo

ocoocoocoooo

oo

o

[=3] w

oo

oOo

-

-

OO

Oo

ocoocoo

ooo

-

oO

oo

-

-

-

OO

Ooo

oocoocooco

oo

107

108 C++ Games Programming

Use the name of the array in the CURSORLIST declaration when you declare
the cursor shape for regions of the screen:

CURSORLIST(Town)

MOUSE_CURSOR(0, 0, 105, 239, LFCURSOR, Took_left)
MOUSE_CURSOR(106, 0, 211, 199, UPCURSOR, Took_forward)

MOUSE_CURSOR(106, 200, 211, 239, DNCURSOR, look_back)
MOUSE_CURSOR(212, 0, 319, 239, RTCURSOR, look_right)

ENDCURSORLIST

Miscellaneous Utilities
The utilities we have discussed so far have been designed specifically for use
with Theatrix. The ywo utilities in this section are general .PCX
manipulation tools.

PASTE

PASTE is useful for “pasting” text (or another portion of an image) onto a

snapshot, or rendered background. Let's say that you are preparing a help
screen. You want a fancy background with text over it (like the help screens
in Marble Fighter and Theatris). You could bring the image into a paint
program and type text over it, but what if you mess up or decide later that

you want to move the text to the left a bit?

PASTE allows you to prepare a separate image, containing only the text,
and then paste the text over the original image. If you decide to change the
text color or move the text, you make the change in the text image and rerun
PASTE. PASTE copies anything thatis not color 0 (usually black).

Note that the image to be pasted does not have to contain text at all—you

can paste any two images together. They should both be the same size.

CHAPTER 6: Theatrix User's Guide

REGION
REGION “cuts” a region out of one .PCX file and saves it in another. For
example:

REGION big.pcx small.pcx 100 100 200 200

This command displays big.pcx and then saves the region defined by 100,100
at the upper left corner and 200,200 at the lower right corner. This utility is
useful when you want to animate a portion of a background and don’t want
to save the entire picture.

109

Theatrix
Reference Manual

"Libraries are not made; they grow.”
Augustine Birrell

This chapter is the reference manualto the Theatrix C++ class library that is
a part of the included CD-ROM. You use it to look up details about the
various components of the library. The chapter includes descriptions of:

© The Theatrix class library
@ Theatrix macros
© Global values
© Global constants

111

112 C++ Games Programming

Class Library Reference
This manual documents those parts of the Theatrix class library that

representits public interface. There are many other classes in the library that

this chapter does not discuss because the programmer does not need to access

their operations directly. We decided not to address them because you might
decide that you need to use them, and that would be a mistake. Later

versions of this library could significantly change how certain classes work.

For example, the library uses its own linked list and other container classes.

Eventually these will be replaced by container classes in the C++ Standard

Template Library when that library is formally defined and universally
understood.

Director (director.h)
There is usually one Director object per screen in a game. The game play is

one or more Director objects, the menu is another Director object, and so on.

Any game created with Theatrix must have at least one Director.

Constructor
Director() // protected

Creates a new Director object. Because this constructor is protected, you can
create a Director only by using derivation. Director is a relatively large object,

about 3KB, so it should be created with care. Typically, a Director-derived
class should be created dynamically using the new operator.

takeover
virtual void take_over() // protected

Runs the Director's cue-dispatching loop. This member function is called
automatically by Theatrix. The take_over function causes the Director to
take control of the application. During the execution of take_over, all other
Director objects in the game are idle.

| Because take_over is called automatically by Theatrix, it is not necessary
to call it. It is, however, often useful to override it. For example, overriding
take_over is a way to ensure that a director runs in a certain keyboard mode

CHAPTER 7: Theatrix Reference Manual

(see Hand::set_hotkeys). In the overridden constructor, set the new mode,
call Director::take_over, and then restore the mode.

display
virtual void display() // protected

The display member function is called automatically by Theatrix when the
Director is about to take over. By default, this routine does nothing but can
be overridden to display backgrounds, initialize variables, and so forth.

hide
virtual void hide() // protected

The hide member function is called automatically by Theatrix after the
Director has given up control. By default, hide does nothing but can be
overridden to clear the screen, display statistics, do a fancy fade-out, and so
on.

iterate_director
virtual void iterate_director() // protected

iterate_director is called by Director::take_over once per cycle of the
dispatching loop. You can override this member to perform tasks that must
occur more often than a timer can provide. Note, however, that the member
will be called at different rates depending on the speed of the processor.

get_next_director
virtual const Type_info& get_next_director() // protected

Returns the type identification of the next director that should take control
of the game. Theatrix calls this member function automatically after the
Director has given up control. Unless a previous call to set_next_director has
been made or the member function has been overridden, the type
identification for StopDirector is returned, informing Theatrix to terminate
the application.

113

114 C++ Games Programming

setnextdirector
void set_next_director(const Type_info *dir) // protected

Informs Theatrix which Director should follow the current one.

nextdirector_set
int next_director_set() // protected

Returns 1 if a call to set_next_director has been made with other than a null
pointer; otherwise, returns 0.

Hand (hand.h)
A Hand object is the basic unit in a game. As in a play, a Hand (a stagehand)

may or may not actually be visible to the audience. A Hand has one or
several tasks that it knows how to perform, and it relies on its Director for its
cues, which tell the Hand when to perform the task.

Constructor
Hand(Director* dir=0) // protected

Creates a Hand object. This constructor, like the constructor for Director, is
protected, which means that in order to use Hand, it is necessary to derive
from Hand. Note that the Director* parameteris optional. Although it is not
mandatory to supply this parameter, a Director must be supplied for any of
the Hand object’s cue members to operate. If a Director pointer is not
supplied during construction, then it should be supplied later with a call to

!
set_director. If any of the Hand class's member functions is invoked before a

| Director has been set (with either the constructor or the set_director member
function), a fatal error occurs and the program terminates.

get_mouseposition
void get_mouseposition(int *x, int *y, int *b) // protected
void get_mouseposition(int *x, int *y) // protected

CHAPTER 7: Theatrix Reference Manual

Retrieves information about the mouse pointer. The x and y parameters are
pointers to variables where the data should go. The data values are the
location of the mouse cursorin screen coordinates. The b parameter retrieves
information about the mouse buttons. The b parameter has the following bits
set if the associated buttons are pressed:

bit 0: mouse button 1

bit 1: mouse button 2

bit 2: middle mouse button

initialize

virtual void initialize() // protected
Does nothing. The initialize member function is called automatically by
Theatrix once and only once per execution of the game. The function is
designed to be overridden and is used to perform initialization tasks that
need to happen only once, such as requesting cues or loading .GFX and .SFX
libraries. (In fact, this is the only member function that should be used to
load .GFX and .SFX libararies.) You can also initialize variables at this time.

mouse_cursorshape
void mouse_cursorshape(char *bitmap) // protected

Specifies what the mouse cursor should look like. The parameter bitmapis a
character array generated by the Theatrix utility program GMICE.

mouse_invisible
void mouse_invisible() // protected

Hides the mouse. This should be called after mouse_visible.

mouse visible
void mouse_visible() // protected

Makes the mouse visible. This member function usually appears in a display
member.

115

116 C++ Games Programming

my_director
Director* my_director() // protected

Returns a pointer to the Director on which the Hand depends for cues. This
is useful if the Hand is creating other Hands and needs to supply a Director
for the constructors.

post_message
void post_message(int msg,long data=0) // protected

Posts the message msg. Theatrix delivers the message to any Hands that
either have requested a cue for the message msg or have included it in a
shortcut macro. The data parameter is optional but can be used to send
information, including pointers to more data.

post_netpack
void post_netpack(int netpack) // protected

Sends a packet to the serial port. The packet is received by a remote system,
generating cues for Hands on that system.

request_hotkey_cue
void request_hotkey_cue(int key,callback cb) // protected

Requests a cue when the hotkey key is pressed. Calling this routine tells
Theatrix that when the user presses the key, execute the callback function.
The key parameter can be any of the constants that take the form
SCAN XXX. These constants are documented later in this chapter. The
callback cb should have a return type of void and can take a single integer
parameter. The parameter sent to the callback is the value key.

request_joystickbutton_cue
void request_joystickbutton_cue(int b,callback cb) // protected

Requests a cue whenever a joystick button is pressed. Calling this routine is
like telling Theatrix, “Whenever the user presses a button, then execute the

CHAPTER 7: Theatrix Reference Manual

routine I have written called cb.” The callback cb should have a return type
of void and take two integer parameters. The two parameters are the distance
from center that the joystick currently is. If the values are zero, then the
joystick is centered. The first value is the horizontal position, and the second
is the vertical position. The range for these values can be retrieved with
Theatrix::get_joystick_extremes.

request_joystickmove_cue
void request_joystickmove_cue(callback cb) // protected

Requests a cue whenever the joystick is moved. Calling this routine is like
telling Theatrix, “Whenever the user moves the joystick, then execute the
routine I have written called cb.” The callback cb should have a return type
of void and take two integer parameters. The two parameters are the distance
from center that the joystick currently is. If the values are zero, then the
joystick is centered. The first value is the horizontal position, and the second
is the vertical position. The range for these values can be retrieved with
Theatrix::get_joystick_extremes.

request keystrokecue
void request_keystroke_cue(int key, callback cb) // protected

Requests a cue when the keystroke key occurs. Calling this routine tells
Theatrix that when the user presses the key, execute the callback function.
The key parameter can be any of the constants found in ascii.h and listed
later in this chapter, or it can be a character constant ('a’, 'b', and so on). The
cb parameter is a member function that you write and should have a return
type of void and take a single integer parameter.

request_message_cue
void request_message_cue(int message,callback cb) // protected

Requests a cue whenever the message message is posted. Calling this routine
tells Theatrix that when the message message is posted, to call the callback
function. The callback cb should have return type of void and take two
parameters. The first parameter should be an integer, and the second a long.

117

118 C++ Games Programming

request_mouseclick_cue
void request_mouseclick_cue(int b,callback cb) // protected

Requests a cue when a mouse button is pressed. Calling this routine is like
telling Theatrix, “Whenever the user presses button b on the mouse, then
execute the routine I have written called cb.” The b parameter can be either
of the constants LEFTMOUSEBUTTON or RIGHTMOUSEBUTTON. The
callback cb should have a return type of void and take three integer
parameters. The first two parameters are the x and y, respectively, of the
mouse position, and the last parameter is the button that was pressed.

request_mousemove_cue
void request_mousemove_cue(callback cb) // protected

Requests a cue whenever the mouse is moved. Calling this routine is like
telling Theatrix, “Whenever the user moves the mouse, then execute the
routine I have written called cb.” The callback cb should have a return of
type void and take three integer parameters. Thefirst two parameters are the
x and vy, respectively, of the mouse position, and the last parameter is the
button that was pressed.

request_netpack_cue
void request_netpack_cue(int netpack,callback cb) // protected

Requests a cue whenever a packet is received from a remote computer.
Calling this routine is like telling Theatrix, “Whenever a packet is received,
then execute the routine I have written called cb.” The callback cb must
have a return type of void and take a single integer parameter.

request_timer_cue
void request_timer_cue(int rate,callback cb) // protected

Requests a cue every rate seconds. Calling this routine tells Theatrix that at
about rate times a second, call the callback function. The rate parameter can
be an integer from 1 to 18. Using 1 means that the function cb is called once
a second, and using 18 means that the function is called 18 times a second.
The callback cb should have a return type of void and take no parameters.

CHAPTER 7: Theatrix Reference Manual

set_director
void set_director(Director*)

This member function is used to tell a Hand from which Director it should
request its cues. If you supply a Director pointer as a parameter to the Hand
constructor, it is not necessary to call this member function.

set_hotkeys
void set_hotkeys(int on) // protected

Turns the hotkey mode on and off. By default, the hotkey mode is off. By
sending 1 or the constant ON, the hotkey mode is activated. Conversely,
sending 0 or OFF turns off the hotkey mode. Remember that keystroke cues
are active only if the hotkey mode is off, and hotkey cues are active only if
the hotkey mode is on.

set_mouseposition
void set_mouseposition(int x, int y) // protected

Forces the mouse pointer to the location specified by x and y. The move
takes effect regardless of the mouse pointer’s visibility.

start_director
void start_director(const Type_info& next) // protected

Signals Theatrix to put the argument Director in control. Before doing so,
Theatrix takes control away from the current Director in control after calling
its hide member function.

stop_director
void stop_director() // protected

Signals the Director to give up control. When the stop_director member
function is called, the Director currently responsible for supplying cues
relinquishes control to the Theatrix scheduling loop, which decides what to
do next.

119

120 C++ Games Programming

stop_hotkey_cue
void stop_hotkey_cue(int key,callback cb) // protected

Prevents future cues from occurring. The logical complement to
request_hotkey_cue, this member function undoes what request did.

stop_joystickbutton_cue
void stop_joystickbutton_cue(int b,callback cb) // protected

Prevents future cues from occurring. The logical complement to
request_joystickbutton_cue, this member function undoes what request did.

stop_joystickmove_cue
void stop_joystickmove_cue(callback cb) // protected

Prevents future cues from occurring. The logical complement to
request_joystickmove_cue, this member function undoes what request did.

stop_keystroke_cue
void stop_keystroke_cue(int key,callback cb) // protected

Prevents future cues from occurring. The logical complement to
request_keystroke_cue, this member function undoes what request did.

stop_message_cue
void stop_message_cue(int message,callback cb) // protected

Prevents future cues from occurring. The logical complement to
request_message_cue, this member function undoes what request did.

stop_mouseclick_cue
void stop_mouseclick_cue(int b,callback cb) // protected

Prevents future cues from occurring. The logical complement to
request_mouseclick_cue, this member function undoes what request did.

CHAPTER 7: Theatrix Reference Manual

stop_mousemove_ cue
void stop_mousemove_cue(callback cb) // protected

Prevents future cues from occurring. The logical complement to
request_mousemove_cue, this member function undoes what request did.

stop_netpack_cue
void stop_netpack_cue(int netpack,callback cb) // protected

Prevents future cues from occurring. The logical complement to
request_netpack_cue, this member function undoes what request did.

stop_timer_cue
void stop_timer_cue(int rate,callback ch) // protected

Prevents future cues from occurring. The logical complement to
request_timer_cue, this member function undoes what request did.

MusicHand (music.h)
MusicHand is not used as a base class for any of the classes in Theatrix.
Although it is safe to assume that each graphical character in a game might
make sounds,it is not safe to assume that each character might want to play
music. MusicHand can be used as a base class for your own music-handling
class. More often you will instantiate an object of MusicHand and use that
object in one of your Director objects.

Constructor
MusicHand(char *sc)

Creates a MusicHand object. The sc parameter is the name of an .XMI file
from which the MusicHand reads music clips.

initialize

virtual void initialize() // protected

121

122 C++ Games Programming

Initializes the MusicHand. This member function is called automatically by
Theatrix.

isconducting
int isconducting()

Returns 1 if MusicHand was able to detect and initialize a sound card.
Otherwise, returns 0.

load_score
void load_score(char* fname)

Loads an .XMI file. This file replaces any file specified at construction.

music_clip_is_playing
int music_clip_is_playing()

Returns 1 if a clip is currently being played; otherwise, returns a 0.

play_music_clip
void play_music_clip(int index)

Begins the music clip found at location index within the .XMI file supplied to
the constructor. The index parameter is an integer value that must be greater
than zero and less than or equal to the number of music clips in the .XMI file.

stop_music_clip
void stop_music_clip()

Interrupts a sound clip that is being played. If no clip is being played, the call
is ignored.

Performer (perform.h)
Performer provides basic graphics support. Classes derived from Performer
can load .GFX libraries and display bitmaps on the active video page.

CHAPTER 7: Theatrix Reference Manual

Constructor
Performer (Director* dir=0) // protected

Constructs a Performer object. If possible, it is recommended that the
Director parameter be supplied here. If it is not, set_director must be called
before any cues are requested.

get_char_height
int get_char_height(char ch)

Returns the height (in pixels) of the character ch. Note that this value may
vary depending on the active .GFX font.

get_char_width
int get_char_width(char ch) // protected

Returns the width (in pixels) of the character ch. Note that this value may
vary depending on the active .GFX font.

get_image_height
int get_image_height(int image_number) // protected

Returns the bitmap height (in pixels) of the bitmap located at location
image_number in the active .GFX library.

get_image_width
int get_image_width(int image_number) // protected

Returns the bitmap width (in pixels) of the bitmap located at location
image_number in the active .GFX library.

get_num_images
int get_num_images() // protected

Returns the number of bitmaps contained in the active .GFX library.

123

DEBRIS

124 C++ Games Programming

load_gfxfont
void load_gfxfont(char* fontlibname) // protected

Loads the .GFX font library fontlibname and makesit the active font for this
Performer. A .GFX font is a .GFX library with 36 bitmaps (the alphabet and
10 digits).

. load_gfxlib
void load_gfxlib(char* 1ibname) // protected

Loads a .GEX file (a .GFX file created with GFXMAKE) into memory and
marks it as the active library for this Performer. If libname has already been
loaded by another Performer, then it is not loaded again, but it is marked as
the active library for this Performer. This member function should be called
only in an initialize routine.

set_gfxfont
void set_gfxfont(char* fontlibname) // protected

Marks fontlibname as the active font for this Performer. Note that it is

necessary to call this member function onlyif the Performer needs access to
more than one .GFX font library.

set_gfxlib
void set_gfxT1ib(char* libname) // protected

Marks the active library for the Performer as libname. Note that it is

necessary to invoke this member function only if the Performer needs to
access images in more than one .GFX library.

a show_clipped_image
void show_clipped_image(int x,int y,int image_number) //protected

Displays the bitmap image_number of the currently active .GFX library at
screen location x,y. The bitmaps in the .GFX library are numbered from 1.

Unlike showimage and show_frame, show_clipped_image observes the

CHAPTER 7: Theatrix Reference Manual

current clipping boundaries. By default, the clipping boundaries are set toinclude the whole screen. show_clipped_image does support transparency.

show_frame
void show_frame(int x,int y,int image_number) // protected

Displays the frame image _number of the currently active .GFX library atscreen location x,y. The bitmaps in the .GFX library are numbered from 1.
Unlike show_image, show_frame does not support transparency. Because itdoes not,it is faster than show_image.

show_image
void show_image(int x,int y,int image_number) // protected

Displays the bitmap image_number of the currently active .GFX library at
screen location x,y. The bitmaps in the .GFX library are numbered from 1.
The show_image function supports transparency (pixels with value zero are
not drawn), so this is a typical routine for animation.

show_number
void show_number(int x,int y,int number) // protected

Displays the number number at x,y, using the active .GFX font. x and y are
expressed in screen pixels. number should be positive.

show_print
void show_print(int x,int y,char* string) // protected

Displays the string at x,y using the active .GFX font. string should contain
only letters, digits, and spaces. x and y are expressed in screen pixels and refer
to the upper left cornerofthe text.

Player (player.h)
Player is used in conjunction with SceneDirector. By using a SceneDirector
with several Player objects, you can animate multiple characters
simultaneously.

125

126 C++ Games Programming

Constructor
Player(char* g1=0,char* s1=0,int intv=1)

Creates a Player object. gl is the .GFX library in which the character's
graphics are stored, and sl is the .SFX library in which the sound effects for

that chracter are stored. intv is the update interval for the character. This

interval defaults to 1, which means that the Playeris updated on every tick
of the timer. A value of 2 means that the Player is updated every two timer
ticks. The intv argument can be any positive number.

appear
void appear()

Causes the Player to become visible.

clip
void clip(int x1,int yl,int x2,int y2)

Activates clipping for the Player. x1,y1 indicates the upperleft corner of the

new clipping region, and x2,y2 indicates the lower right corner.

disappear
1 void disappear()

Causes the Player to become hidden.

get_imageno
short int get_imageno()

{ Returns the current image number for the Player.

getheight
short int getheight() const

Returns the Player's current height in pixels.

CHAPTER 7: Theatrix Reference Manual 127

getwidth
short int getwidth() const

Returns the Player's current width in pixels.

getx
short int getx() const

Returns the Player's current horizontal position.

gety
short int gety() const

Returns the Player's current vertical position.

initialize

void initialize() // protected
Loads the .GFX file for the player. This member function is called by
Theatrix, but it is sometimes useful to overrideit to include other tasks.

isclipped
int isclipped()

Returns 1 if a clipping regionis active; otherwise, returns 0.

isvisible

int isvisible()
Returns 1 if the playeris visible; otherwise, returns 0.

set_imageno
void set_imageno(short int index)

128 C++ Games Programming

Specifies the .GFX bitmap number. The index parameter specifies which
image to use from the .GFX file. If the Player changes from frame to frame,

this member function can be used to modify which image is used in the .GFX

library to draw the character.

setinterval
void setinterval(short int inv)

Sets the Player's update interval to inv.

setx
void setx(short int nx)

Sets the Player's current X position to nx.

setxy
void setxy(short int nx,short int ny)

Sets the Player's current X and Y positions to nx and ny.

sety
void sety(short int ny)

Sets the Player's current Y position to ny.

stiliframe
void stillframe(short int im,short int wait)

Displays image im at the current position and delays for wait ticks of the

timer.

unclip
void unclip()

Deactivates the current clipping region. If no clipping region has been set,
then the call is ignored.

CHAPTER 7: Theatrix Reference Manual

update_position
virtual void update_position()

Does nothing. The intended purpose for this member function is to be
overridden by a derived class. The new member function is then called by
SceneDirector and should calculate a new position based on the Player's role
in your game.

SceneDirector (scenedir.h)
SceneDirector is designed for use with Player. Using this combination, it is
possible to animate multiple characters simultaneously.

Constructor
SceneDirector(char* scfile)

Constructs a SceneDirector object. scfile is a .PCX file that is used as a
background for the scene.

display
void display() // protected

Clears video, displays the background image, and requests internal cues. This
member function is called automatically by Theatrix when the Director
objectfirst takes control, and it is sometimes useful to override it. When you
do, your derived class's member function should call SceneDirector::display
in addition to whatever the override does.

on_escape
void on_escape(int) // protected

Stops the Director. If you don’t want the Director to stop when the Esc key is
pressed, then override this function with an empty version.

129

130 C++ Games Programming

on_timer
void on_timer() // protected

Updates the screen. This is called automatically by Theatrix once each clock
tick. You can override the function to add behavior.

SceneryDirector (scenery.h)
SceneryDirector provides a basic, simple interface for displaying background
scenery.

Constructor
SceneryDirector(char *pcxfile, short int trans = ClearEveryTime)

Creates a SceneryDirector object. The pcxfile parameter is the name of the
PCX file for use as a background. The optional trans parameter defines how
the SceneryDirector displays the background. The default value
ClearEveryTime means that the whole screen is cleared (to color zero), and

then the .PCX file is displayed. Alternatively, using the value NoTransition
causes SceneryDirector to display images without clearing video memory.
Also, values greater than or equal to 1 can be sent to the SceneryDirector
constructor to invoke a fade-in effect.

display_original_scenery
virtual void display_original_scenery();

Displays the original scenery from the hidden page. Copies the hidden page
buffer to the active and visible page buffers.

get_next_director
virtual const Type_info& get_next_director() // protected

Returns the ID of the next Director. Unless a previous call to
set_next_director has been made, this member returns NextDirector. This

CHAPTER 7: Theatrix Reference Manual

member is called by Theatrix and can be overriden to return a specific
Director identification of your choice.

refresh_display
virtual void refresh_display();

Sets the active page to be the visible page and what was the visible page to be
the active page. Then copies the now-visible page buffer into the active page.
This function hides the mouse cursor before doing any page swapping and
restores the mouse cursor afterward.

Theatrix (theatrix.h)
Theatrix is the object that encapsulates the whole game. It is designed as a
base class for an object that will be instantiated in the main function of the
program. Any Director-derived objects in the game should be created in the
constructor of the Theatrix-derived class.

Constructor
Theatrix(char* str) // protected

Creates a Theatrix object. The str parameter is a string that appears on the
startup screen and is typically the name of the game.

enable_joystick
void enable_joystick()

Instructs Theatrix that the game uses the joystick. Among other things, this
activates the joystick calibration sequence.

enable_netpacks
void enable_netpacks()

Activates the netpack event system. This is to be used if the game makes use
of the serial communications abilities of Theatrix.

131

132 C++ Games Programming

go
void go(int index=0)

This is the member function that makes it all happen. Theatrix initializes
itself and puts in charge the Director indicated by index. The default 0
parameter causes the first Director created to be the first to be executed.
Sending 1 causes the second Director created to be executed first, and so on.

go
void go(const Type_info& d)

This routine acts just like the previous version except that it starts the game
with the Director specified as the parameter d.

joystick_extremes
void joystick _extremes(int *x1, int *yl, int *x2, int *y2)

Returns the extreme values that the joystick can return. Because the values
returned by a joystick differ from one joystick to another (and from one
computer to another), the extreme values that are retrieved during joystick
calibration can be retrieved using this member.

setxms
void set_xms(int mode)

Activates or deactivates XMS memory usage. Sending 0 or OFF prevents
Theatrix from using any XMS memory. Conversely, sending 1 or ON informs
Theatrix that if it is available, XMS should be used. By default, XMS memory is
used. To take effect, this member function must be called before go is called.

use_commport
void use_commport(int port)

Instructs Theatrix to use the serial port port for serial communications
(netpacks). If enable_netpacks is not also called, this call is meaningless (and
harmless). By default, Theatrix uses comm 1.

CHAPTER 7: Theatrix Reference Manual

use _video_mode
void use_video_mode(int vmode)

Instructs Theatrix to use vmode, instead of the default video mode defined in
settings.h. To take effect, this member function must be called before go is
called.

VideoDirector (viddir.h)
Derived from Director, VideoDirector provides a set of routines useful in
managing graphic pages. Specifically, VideoDirector supports page flipping.

Constructor
VideoDirector() // protected

Constructs a VideoDirector object. Because this is a protected constructor, it
is possible to create such an object only by using derivation.

active_page
static int active_page()

Returns the current active video page. This is always either O or 1.

fill_background_buffer
void fill_background_buffer(int source_page) // protected

Copies the contents of video page source_page to the background buffer page
(page 2). Typically, this member function is called after a background has
been loaded from disk or constructed on page 0 or page 1. Then portions or all
of the background buffer page can be used to restore damaged sections of the
active page.

flush_patch
static void flush_patch(int x1,int yl,int x2,int y2)

Copies a portion of the active page to the visual page. This is the only
member function that draws directly to the visual page. This is useful when a

133

134 C++ Games Programming

change made to the active page must be synchronized and when a complete
page flip would be inconvenient.

init_video
void init_video() // protected

Clears and resets the page-flipping mechanism. Both pages involved with the
page flipping (pages 0 and 1) are cleared to black (color zero), and the page-
flipping mechanism is reset.

restore_page
void restore_page() // protected

Copies the entire background page (page 2) to the active page. This is useful
for erasing all sprites at once.

restore_patch
static void restore_patch(int x1,int yl,int x2,int y2)

Copies a portion of the background page (page 2) to the active page. This is
useful for erasing sprites drawn on the active page. Because a clean copy of
the background can be stored in the background page (with a call to
fill_background_buffer), the restored patch looks like the original.

set_synch_patch
static int set_synch_patch(int x1,int yl,int x2,int y2)

Marks a patch (or rectangle) of the active page to be copied to the active page
later. Several of these patches can be marked in this manner, and then all of
them can be synchronized at once with a call to synch_patches.

show_pcx
static int show_pcx(char* pcxfile)

Reads pcxfile from disk and displays it on the active video page. Also, the
palette found in pcxfile is installed. If pcxfile is missing or corrupted,
show_pcx returns NOT_OK.If all goes well, it returns OK.

CHAPTER 7: Theatrix Reference Manual 135

show_video

static void show_video(char* fname,int x,int Y.int nonstop=0)
Plays an .FLC file (video). The FLC file nameis specified by the fname
parameter. x and y indicate where the video should appear on the screen
(upper left corner). The optional nonstop parameter can be set to 1 if the
video should be played in a continuous loop.

stop_video
static void stop_video()

Interrupts the .FLC file. If no file is playing, the call is ignored.

swap_video_pages
void swap_video_pages() // protected

Displays the active video page and hides the visual page. Typically,
swap_video_pages is called after a scene has been constructed on the active

(hidden) page. The routine then displays the new image, and the new active
page (the old visual page) is ready for the construction of the next scene.

synch_patch
static void synch_patch(int xI1,int y1,int x2,int y2)

Copiesa portion of the visual page to the active page.

synch_patches
static int synch_patches()

Copiesall the patches marked with set_synch_patch from the visual page tothe active page. The return value is the number of patches that were marked
before the call. Once this member function is called, all the patches areunmarked.

136 C++ Games Programming

synch_video_pages
static void synch_video_pages()

Copies the entire visual page to the active page. This is useful for situations
in whch it is necessary to synchronize both video pages.

video_playing
static int video_playing()

Returns1 if an .FLC file is playing; otherwise, returns 0.

visual_page
static int visual_page()

Returns the current visual page. This is always either 0 or 1.

VocalHand (vocal.h)
The VocalHand class supports sound effects and voices by maintaining
libraries of and playing back sound clips in the .VOC format. It is possible to
derive directly from VocalHand and use the resulting class to do all the
sounds for the game, or you can have each Performer play its own sounds.
The latteris possible because Performeris derived from VocalHand.

Constructor
VocalHand(Director* d=0)

Creates a VocalHand object. Theatrix automatically detects and initializes
the sound card and driver. If no sound card is detected, then calls to
play_sound_clip are ignored.

get_num_clips
int get_num_clips()

Returns the number of sound clips in the active .SFX library.

CHAPTER 7: Theatrix Reference Manual

get_sound_clip_length
int get_sound_clip_length(int clip_index)

Returns the length (in bytes) of the clip at the location clip_index in the
active .SFX library.

load_sfxlib

void load_sfxlib(char* sfxlibname)

Loads the sound clip library sfxlibname (an .SFX file created with SFXMAKE)
into memory. This member function should be called only in an initialize
routine.

play_sound_clip
void play_sound_cilp(int clip_index)

Plays the sound clip in the active .SFX library at the location clip_index. The
clip is played until it is interrupted by anothercall to play_sound_clip or the
end of the clip is reached.

set_sfxlib

void set_sfxlib(char* sfxlibname)

Marks sfxlibname as the active sound library for this VocalHand. It is
necessary to call this member function only if the VocalHand must play
sound clips from more than one .SFX library.

sound_clip_is_playing
int sound_clip_is_playing()

Returns TRUE if a sound clip is currently being played, and FALSE if the
sound card is idle.

137

138 C++ Games Programming

stop_sound_clip
void stop_sound_clip()

Stops the sound card from playing the rest of a sound clip. If no sound is

being played at the time of the call, the call is ignored.

Macros
Theatrix provides a set of macros to connect events to callbacks and to define

mouse cursor screen regions. These macros define tables that the system uses
to make the associations. Other miscellaneous macros are also discussed here.

The CUELIST (hand.h)
The CUELIST table associates events with callback functions. The program
includes the DECLARE_CUELIST statement in a class declaration and puts a

CUELIST declaration in the executable code within scope of the class
declaration, as shown in this example:

class MyHand : public Hand {

Fleiss
DECLARE_CUELIST

void on_key_a();
void on_timer();

Js

CUELIST(MyHand)

KEYSTROKE('a',on_key_a)
TIMER(1,on_timer)

ENDLIST

CUELIST

CUELIST(class_name)

Begins a CUE table definition. class_name is the name of the class that
contains the cues.

CHAPTER 7: Theatrix Reference Manual

DECLARE_CUELIST

DECLARE_CUELIST

Declares that a class will have a CUELIST table. This statement must appear
in the class declaration.

ENDCUELIST

ENDCUELIST

Terminates the CUELIST table.

HOTKEY

HOTKEY (key, cue_function)

Defines a relationship between the key key and the function cue function.
This means that whenever the user presses key, Theatrix invokes
cue_function automatically. The cue_function function should be provided
withoutclass specification and without parentheses.

JOYSTICKBUTTON

JOYSTICKBUTTON(b,cue_function)

Requests that cue_function be called whenever the button b is pressed on the
joystick. The b argument specifies the button and may be BUTTONONE or
BUTTONTWO. The cue_function callback should be provided without class

specification and without parentheses.

JOYSTICKMOVE

JOYSTICKMOVE (cue_function)

Informs Theatrix that whenever the joystick is moved, cue_function should
be invoked. The cuefunction callback should be provided without class
specification and without parentheses.

139

140 C++ Games Programming

KEYSTROKE

KEYSTROKE (key, cue_function)

Establishes a connection between key and cue_function. When the user
presses key, Theatrix invokes cue_function. The cue_function function
should be provided without class specification and without parentheses.

MESSAGE

MESSAGE (msg, cue_function)
Instructs Theatrix to invoke the cue_function whenever the message msg is
posted. cue_function should be provided without class specification and
without parentheses.

MOUSECLICK

MOUSECLICK (button, cue_function)
Establishes a connection between the mouse button button and the
cue_function callback. The button argument may be
RIGHTMOUSEBUTTON or LEFTMOUSEBUTTON. When the user presses

a mouse button, Theatrix will invoke the cue_function. The cue_function
callback should be provided without class specification and without
parentheses.

MOUSEMOVE

MOUSEMOVE(cue_function)

Informs Theatrix that whenever the mouse moves, cue_function should be
invoked. cue_function should be provided without class specification and
without parentheses.

NETPACK

NETPACK (packet, cue_function)

|
Requests thatif the packet is received at the serial port, cue_function should

| be called. cue_function should be provided without class specification and
| without parentheses.

CHAPTER 7: Theatrix Reference Manual

TIMER

TIMER(rate,cue_function)

Instructs Theatrix to invoke the cue_function at rate times per second.
cue_function should be provided without class specification and without
parentheses.

The CURSORLIST (scenery.h)
The CURSORLIST table associates events with callback functions. The

program includes the DECLARE_MOUSECURSORS statement in a class
declaration and puts a CURSORLIST declaration in the executable code
within scope of the class declaration, as shown in this example:

class MyHand : public Hand {

IF wis
DECLARE_MOUSECURSORS

void click_left();
void click_up();
void click_down();
void click_right();

};

CURSORLIST(MyHand)

MOUSE_CURSOR(0, 0,105,239, LEFTARROWCURSOR, click_left)
MOUSE_CURSOR(106, 0,211,199, UPARROWCURSOR, click_up)

MOUSE_CURSOR(106,200,211,239, DOWNARROWCURSOR, click_down)
MOUSE_CURSOR(212, 0,319,239, RIGHTARROWCURSOR, click_right)

ENDCURSORLIST

CURSORLIST

CURSORLIST (class_name)

Begins a CURSORtable definition. class_name is the name of the class that
contains the cursor list.

141

142 C++ Games Programming

DECLARE_MOUSECURSORS

DECLARE_MOUSECURSORS

Declares that a class will have a CURSORLIST table. This statement must
appear in the class declaration.

ENDCURSORLIST

ENDCURSORLIST

Terminates the CURSORLIST table.

MOUSECURSOR

MOUSE_CURSOR(x1,y1,x2,y2,cursorshape,callback)
Defines a mouse cursor region and a callback function to be called if the user
clicks in that region. The x1 and y1 arguments define the upper left screen
coordinates. The x2 and y2 arguments define the lower right screen
coordinates. The cursorshape argumentis a pointer to a character array that
defines the cursor’s shape. You can use one of the globally defined constants
listed in the next discussion for each cursor shape, or you can design your
own and use the GMICE utility program, as described in Chapter 6, to
convert your graphical mouse cursor to a character array. The callback
argument is the address of a function that Theatrix calls when the user clicks
the left mouse button within the screen region defined by the coordinate
arguments,

Mouse Cursor Shapes (scenery.h)
Following are cursor shape global symbols that you can use for the
cursorshape argument in the MOUSECURSOR macro. Figure 4.13 (Chapter
4) shows what all the cursors except the default cursor look like. The default
cursor is the standard upward-left pointing arrow.

CHAPTER 7: Theatrix Reference Manual

UPPERLEFTARROWCURSOR
UPARROWCURSOR
UPPERRIGHTARROWCURSOR
LEFTARROWCURSOR
CENTERCURSOR
RIGHTARROWCURSOR
LOWERLEFTARROWCURSOR
DOWNARROWCURSOR
LOWERRIGHTARROWCURSOR

DEFAULTCURSOR¢
0
0
0
0
0
9
0
9
9

Assert (debug.h)
Assert

Assert(condition);

The Assert macro works just like the Standard C assert macro. Theatrix

implements its own version to allow an assertion to find its way to the

functions that make an orderly shutdown of the game runtime environment,
including the release of interrupt vectors.

Adjusting Theatrix (settings.h)
The following constant values define ranges and operating limits for the
library. For most games, the values assigned to these settings suffice, but a

large or unusual game may need to change one or more of these values. In

this case, modify the value and recompile Theatrix.

DEFAULT_VIDEO_MODE

This is the mode number that Theatrix uses if one is not supplied using
Theatrix:use_video_mode. This constant is set to 22, which is Mode X, but

it can be changed if you want Theatrix to use another mode by default.

143

144 C++ Games Programming

MAXDIRECTORS
Theatrix has a limit of 20 Directors to a game. If you need to use more, then
increment this constant.

MAXFXLIBS
Theatrix allows a game to load as many as 30 .GFX and .SFX libraries. If yourequire more, increment this constant.

| MAXHANDS
Theatrix has a limit of 250 Hands to a game. If you find that this is notenough, then increment this constant.

MAXMESSAGE
Theatrix allows messages ranging in value from 0 to 200. This value can be
increased to allow higher values as messages.

MAXNETPACK
Theatrix allows netpacks (packets sent over serial connections) to range invalue from 0 to 100. This value can be increased. However, values greaterthan 255 do not transmit correctly, because the netpack system transfers
bytes and a byte cannot contain a number higher than 255.

NUMPATCHES
Theatrix allows as many as 25 synch patches to be set at once (refer to

VideoDirector::set_synch_patch). If you need more, increment this constant.

CHAPTER 7: Theatrix Reference Manual 145

Keyboard ASCII Codes (ascii.h)
The global symbols shown in Table 7.1 are ASCII values for the keystrokes

that you can use as the key argument in a KEYSTROKE statement within a

CUELIST table.

Table 7.1 Constants for keystroke cues

Symbol BIOS Key Symbol BIOS Key Symbol BIOS Key

END 0x4f00 INS 0x5200 Fl 0x3b00

LF 0x4p00 DEL 0x5300 F2 0x3c00

LEFTARROW 0x4b00 ESC 0x001b F3 0x3d00

HOME 0x4700 ESCAPE 0x001b FA 0x3e00

up 0x4800 ENTER 0x000D F5 0x3f00

UPARROW 0x4800 SPACE 0x0020 Fé 0x4000

PGUP 0x4900 SPACEBAR 0x0020 F7 0x4100

RT 0x4d00 F8 0x4200

RIGHTARROW 0x4d00 Fo 0x4300

PGDN 0x5100 F10 0x4400

DN 0x5000

DOWNARROW 0x5000

Keyboard Scan Codes (scancode.h)
The global symbols shown in Table 7.2 are the scan codes that you can use as

the key argument in a HOTKEY statement within a CUELIST table.

146 C++ Games Programming

Table 7.2 Constants for hotkey cues
Scan Scan ScanSymbol Code Symbol Code Symbol Code

SCAN_SPACE 0x39 SCAN_F1 0x3b SCAN_A Oxle
SCAN_ENTER Ox1c SCAN_F2 0x3c SCAN_B 0x30
SCAN_INSERT 0x52 SCAN_F3 0x3d SCAN_C Ox2e
SCAN_DEL 0x53 SCAN_F4 0x3e SCAN_E 0x12
SCAN_END Ox4f SCAN_F5 Ox3f SCAN_F 0x21

SCAN_PGDN 0x51 SCAN_F6 0x40 SCAN_G 0x22
SCAN_PGUP 0x49 SCAN_F7 0x41 SCAN_H 0x23
SCAN_HOME 0x47 SCAN_F8 0x42 SCAN_| 0x17
SCAN_LEFT Ox4b SCAN_F9 0x43 SCAN_J 0x24
SCAN_UP 0x48 SCAN_F10 0x44 SCAN_K 0x25
SCAN_RIGHT Ox4d SCAN_L 0x26
SCAN_DOWN 0x50 SCAN_M 0x32
SCAN_BKSPACE Ox0e SCAN_N 0x31
SCAN_TAB OxOf SCAN_O 0x18
SCAN_ESCAPE 0x01 SCAN_P 0x19

SCAN_ESC 0x01 SCAN_Q 0x10
SCAN_CTRL Ox1d SCAN_R 0x13
SCAN_LSHIFT Ox2a SCAN_S Ox1f

|

SCAN_RSHIFT 0x36 SCAN_T 0x14 |

SCAN_PRINTSCREEN 0x37 SCAN_U 0x16
SCAN_ALT 0x38 SCAN_V Ox2f
SCAN_NUMLOCK 0x45 SCAN_W 0x11

SCAN_SCROLLLOCK 0x46 SCAN_X 0x2d

SCAN_Y 0x15

SCAN_Z Ox2c

CHAPTER 7: Theatrix Reference Manual 147

Controller Button Symbols (standard.h)
The symbols shown in Table 7.3 define button values on the mouse and
joystick and are used in statements in the CUELIST table.

Table 7.3 Mouse and joystick button constants
CUELIST Statement Symbol Value

MOUSECLICK LEFTMOUSEBUTTON 1

i RIGHTMOUSEBUTTON 2

JOYSTICKBUTTON BUTTONONE 1

" BUTTONTWO 2

You can also use these symbols as arguments to Theatrix functions that
expect button arguments.

Theatrix Technical
Specifications

“Our life is frittered away by detail ...Simplify, simplify.”
Henry David Thoreau

This chapter explains the Theatrix internal class structure and data files. We
assume that you understand Theatrix well enough to use it and that now you
are interested in knowing more about how it works. This chapter is a
technical discussion of the operation of the class library, which will be of
interest to programmers who want to enhance or modify the library. It also
provides insight into the best ways to take advantage of the software
framework when you design your games. You will learn about:

© How the classes operate
© How Theatrix uses datafiles

149

150 C++ Games Programming

Classes and Data Structures
The implementation of Theatrix consists of several class hierarchies that
combine to support the interface that you learned in Chapters 5 and 7. Those
chapters taught you how to use the Theatrix library, so they presented only
the public interfaces of the exposed classes and the protected interfaces of the
classes from which you derive to build your game. This chapter delves more
deeply into how Theatrix works and what the underlying classes are.

Theatrix
You learned to build a game by first deriving a game class from the Theatrix
class and then having your derived class encapsulate and instantiate the
components of the game: scenery, players, directors, sound effects, music,
and so on. Forthis discussion you can refer to theatrix.h in Appendix B and,if
you want to see more of the details of implementation, to theatrix.cpp on the
included CD-ROM in \THX\SOURCE\THEATRIX.

A game must instantiate one and only one object derived from the
Theatrix class before it constructs any of the other components of the game.
The Theatrix constructor initializes a current_game global pointer to type
Theatrix with its own address after asserting that the pointer is set to zero.
That assertion ensures that no other Theatrix objects are instantiated. Other
parts of the game use the current_game pointer to address the game object.
Because the pointer is global, your instantiation of the object may be local.
The demo games instantiate in their main functions an auto object of a type
derived from Theatrix.

List of Directors
The Theatrix class maintains an array of pointers to the directors that
constitute the game. When an object of type Director or one derived from
Director is constructed, the Director constructor adds the object’s address
to the Theatrix class’s array of director pointers by calling the

CHAPTER 8: Theatrix Technical Specifications

Theatrix::add_director function through the current_game pointer. The
order of director object pointers in the array represents the logical order of
directors in the game. That order figures prominently later.

Message Servers
The Theatrix class includes eight event server objects. These objects are
part of the mechanism that dispatches event messages to components of
the game. The complex event sensing and message dispatching procedure
spans several classes and uses several data structures. The complexity of
this approach provides the most efficient mechanism to achieve the desired
result.

Event servers test for hardware events, and, when events occur, the servers
cause the dispatching of messages to the callback functions for all game
components that have requested cues for the specific events. The servers do
not themselves dispatch the messages. That function is done by the folder
mechanism in the Director class, but the event servers launch the folder
functions that dispatch the messages.

There are event servers for events related to ASCII keystrokes, hotkey
presses, timers, generic messages, mouse clicks, mouse movements, joystick
motion and keypresses, and serial port network packets.

Event servers are declared static in the Theatrix class declaration. They
would not need to be static to work properly, because there can be only one
Theatrix object instantiated at any one time. The static declaration is used
for performance reasons. Event sensing runs constantly, testing every event
device for events and launching message dispatching when events occur. By
making the server objects static, we avoid the overhead added by the
compiler to initialize and dereference the this pointer for each use of a
server object.

Each of the event servers differs according to the device it polls, but they
all operate in a similar fashion. You can refer to these header files in
Appendix B as you read this discussion:

151

152 C++ Games Programming

Server Header file
Timer fimesrvr.h

Keystroke keysrvr.h

Hotkey kdsrvr.h

Message msgsrvr.h

Mouse click mcsrvr.h

Mouse movement mmesrvr.n

Joystick jssrvr.h

Network packet netsrvr.h

Each of the header files has an associated .CPP file on the CD-ROM in
\THX\SOURCE\THEATRIX

Messages are dispatched to objects derived from the Hand class. The
object receiving the dispatch must be associated with an object derived from
the Director class, either by being derived from Director or by receiving cues
from the current Director object in control of the game. Each Director object
has tables of event registrations. You will learn more about these tables,
which involve objects called folders and handlers, later in the discussion
about the Director class.

Event servers poll the devices and report events by calling the dispatch
function associated with a folder object that contains the registrations of
Hand functions with events.

The keystroke server is a typical event server. We will discuss its
operation, and you can apply that knowledge to your understanding of the
other servers.

All server classes are derived from the Server abstract base class, which is
declared in server.h:

class Server {

virtual void startup() { }

virtual void shutdown() { }

public:
virtual void check(Folder&) = 0;
bs

CHAPTER 8: Theatrix Technical Specifications

Some servers override the virtual startup and shutdown functions if their
devices have initialization and shutdown procedures before they can be used.
Servers that have no such procedures do not override these functions. The
KeystrokeServer class, shown next, does not.

class KeystrokeServer : public Server ({

public:
void check(Folder&);
};

When a Director object runs a game,it has a dispatching loop from which it
calls the check function for all the device servers. Your program does not
concern itself with the dispatching loop. The Director class takes care of it.
The Director class includes folder objects for each of the devices, and
Director passes to the server’s check function a reference to the folder object.
As you will see later, folder objects are specialized for the devices they
support. Here is the KeystrokeServer::check function.

void KeystrokeServer::check(Folder& fl1d)
{

unsigned char ascii,aux;
fg_intkey(&ascii,&aux); // test for a keystroke
if (ascii [|| aux)

fld.dispatch(ascii, aux); // pass the keystroke value
}

The KeystrokeServer::check function tests to see whether the user has
pressed a key. If a key has been pressed, the check function calls the dispatch
function associated with the folder object that was passed by reference as an
argument. The check function passes to the dispatch function the two values
that represent a keystroke. We used a function call from the Fastgraph library
to test for the keystroke, but a BIOS call would have done the job just as well.
If the user presses an extended key (non-ASCII), the ascii variable is set to
zero and the aux variable is set to the key’s keyboard scan code. If the user
presses a regular ASCII key, the ascii variable is set to the ASCII value of the
keystroke ('a', 'A', 'b', 'B', and so on) and the aux variableis set to zero.

154 C++ Games Programming

The server only senses the hardware event. It is the folder’s job to
determine whether there are game components registered to receive a cue
when the particular key is pressed.

Hardware Enable
The Theatrix class includes functions that the game application program can
call to enable the use of XMS,the joystick, and the serial port for multiplayer
games, and to set the video mode. The game program calls these functions
after instantiating an object of a class derived from Theatrix and before using
that object to launch the game, as shown here:

class MyGame : public Theatrix {

Lil&sms

Xi

int main()
{

MyGame mygame; // instantiate the game object
mygame.enable_joystick(); // game uses the joystick

mygame.go(); // launch the game

return 0;

System Startup
The game program calls the Theatrix::go function to launch the game. The go
function sets things up so that the first instantiated Director object will run
the game. To specify starting with a different Director, include its class
typeid orits relative-to-zero position as an argument to the go function.

The go function calls the startup functions for each of the server objects
and calls static startup functions for the VocalHand and MusicHand classes,
too. These two classes have startup procedures that load and initialize sound
effects drivers and MIDI drivers into memory.

The go function calls the static Hand::initialize_hands member function
class to initialize all instantiated Hand objects. This is the only time that

CHAPTER 8: Theatrix Technical Specifications

those objects’ initialization function is called, so it is important that the
program declare all instances of Hand objects for the entire game before
calling the go function.

The go function initializes the video mode and then the mouse. Then the
function runs a director-launching loop calling, in succession,
Director:.display, Director::take_over, and Director::hide for the Director
object that is being given control. All the game activity for the scene being
directed takes place from within these three function calls. When they
return, the director-launching loop calls the old director's get_next_director
function to compute an index to a new director to take over. The index is a
subscript into the list of directors that the Theatrix class maintains. The
director-launching loop continues untilits call to find_director_index returns
~1, which means that the gameis over.

System Shutdown
When a game is over, the Theatrix object shuts down the event devices
and the video mode in the reverse order in which it started them up. Each
of the devices has a shutdown function that takes care of its ownshutdown procedures—releasing interrupt vectors, restoring memoryallocations, and so on.

System Abort
The Theatrix class includes fatal functions that do an orderly close down of
the system before aborting. These functions, declared in theatrix.h display
messages on the screen after restoring all interrupts and the video mode. One
of the fatal functions accepts a char* argument that points to the message to
be displayed. This function is called from within the library when it finds
exceptional conditions that require the program to stop.

The other fatal function supports the Assert macro, defined in theatrix.h.
The function accepts two strings and an integer. The first string is the error
condition, the second is the name of the source code file where the error was
encountered, and the integer is the source code line number. The Assert
macro replaces the Standard C assert macro to allow the game program to
make an orderly shutdown of its devices prior to aborting due to a failed
assertion.

155

156 C++ Games Programming

Hands
The Hand base class exists to support the registration of derived class objects
for event messages and to support mouse operations. You can refer to hand.h
in Appendix B during this discussion. Directors and other game components
derive from Hand so that they can request and receive event messages.

The Hand base class has only four data members: a pointer to the Director
object that is in charge of the Hand object (when the Hand objectis itself a

Director, this is a pointer to itself); an indicator to tell whether the Hand
object is using the mouse; a static count of instantiated Hand objects; and a

static array of pointers to instantiated Hand objects.

When a Hand objectis instantiated, its constructor accepts a pointer to the
Director that directs the actions of the Hand. The object stores that pointer
for later use and appends its own address (the this pointer) to the array of

instantiated Hand objects.

Cue Registries
Most of the members of the Hand class support the registration of the Hand
object to receive cues based on events. There are request and stop functions
for each of the kinds of cues that a Hand can receive.

The hand.h file also defines the macros that implement the CUELIST

table. When a derived class includes the DECLARE_CUELIST macro, the
C++ preprocessor translates that statement into the declaration of a static

array of structure objects that represent cues. Each element in the array
contains an event code, a data byte, and the address of a callback function.
The DECLARE_CUELIST macro also declares an inline function named
GetMessageMap that returns the address of the array. That function
overrides a virtual function in the base Hand class that returns a null
pointer.

The CUELIST macro expands into the definition of the array that the
DECLARE_CUELIST macro declares. There are several other macros
(HOTKEY, TIMER, MESSAGE, KEYSTROKE, MOUSECLICK,
MOUSEMOVE, JOYSTICKMOVE, JOYSTICKBUTTON, and NETPACK)
that declare initializers to the array. The END_CUELIST macro declares the
terminal entry and C++ tokens for the array.

CHAPTER 8: Theatrix Technical Specifications

The static Hand::initialize_hands function iterates through the static
array of instantiated Hand objects and calls the GetMessageMap function ofeach one. If the function returns a non-null pointer, the program iteratesthrough the array of event structures in the Hand object's message map. Foreach entry, the program requests the appropriate cue for the hand, specifyingthe callback function in the message map entry.

Directors
Objects of classes derived from Director run the game. The Director class isderived from the Hand class, so Director objects may request and receivecues.

One Director objectat a time is in control of the game. As Director objectsare constructed, they are added to the list of directors that the Theatrix classobject maintains. Their order in this list represents their logical order ofexecution. The first director in the list is the first director given control.When that director relinquishes control, the second director in the list getscontrol. When the last director in the list relinquishes control, the game isover. Directors relinquish control by calling the Hand::stop_directorfunction. If a director wants to pass control to a specific director other thanthe next one in the list, the controlling director (or one of its other Handobjects) calls Hand::start_director and passes the typeid of the director objectthat will take control.

Folders
Each instantiated Director object has eight objects of classes derived from theFolder class, which is declared in folder.h (see Appendix B). There is onefolder for each of the event devices, and they are all derived from the Folderabstract base class. Each Folder class has a dispatch function that dispatchesevent cue messages to those Hand objects that have registered for the cues.The event servers previously discussed call the Folder classes’ dispatchfunctions when events are sensed.

We will continue our explanation of events and messages by addressingthe keystroke event. Each Director contains one KeystrokeFolder object, the
essence of which is shown here. You can view the entire class in folder.h andkeyfold.h in Appendix B.

167

158 C++ Games Programming

class KeystrokeFolder : public Folder {

EventHandler key[NUMKEYS];

public:
KeystrokeFolder() : Folder(key, NUMKEYS) { }

void dispatch(int, int, int);
bs

The array of EventHandler objects in the KeystrokeFolder class is the
dispatching table. There is one such object for each possible event. In this

case, there is one EventHandler object for each possible keystroke. The

essence of the EventHandler class is shown here. You can view the entire

class in handler.h in Appendix B.

class EventHandler {

LinkedList<subscription> slist;
public:

void execute callbacks(int p1=0, int p2=0, int p3=0);

hs

Each EventHandler object includes a linked list of subscription objects. The

subscription class is declared in handler.h:

struct subscription {

Hand* hand;

callback cb;
subscription(Hand*h, callback c) : hand(h), cb(c)

fc)
}s

The callback typeis a typedef declared in hand.h as shown here:

typedef void(Hand::*callback)(int,int,int);

Each subscription object contains the address of the Hand object that

requested the event cue message and the address of the Hand object’s
callback function. Figure 8.1 illustrates the relationship of directors, folders,

event handlers, subscriptions, and callback functions.

CHAPTER 8: Theatrix Technical Specifications 159

Director

Folders

EventHandlers
subscriptions

Hand*|(*callback)0

Figure 8.1 Event cue message data structures

A Folder object's dispatch function uses the data passed to it by the Serverobject’s check function to determine which event occurred and whichcallback function to execute, as shown here:

void KeystrokeFolder::dispatch(int ascii, int aux, int)
{

int code=(aux<<8)+ascii;
if (aux)

key[aux+AUX_OFFSET].execute_callbacks (code):
else

key[asciil.execute_callbacks (code):
}

The KeystrokeFolder::dispatch function uses the combined argument valuesof its ascii and aux parameters to develop a key code and to vector into its
array of EventHandler objects to select a linked list of subscriptions toservice.

Figure 8.2 illustrates the logical relationships between the gamecomponents during initialization and game play.

160 C++ Games Programming

Hand requests a cue

During [Hand]——————— [Director f Dicclo sores

initialization... folder er
a folder

Using Wh aeThesis Director
tly to

During ar folder

gameplay... Theatr
server

Figure 8.2 Event cue message logical flow

The EventHandler::execute_callbacks function iterates through the selected

linked list of subscription objects and calls the functions that have values in

the callback function pointer, as shown here:

void EventHandler::execute_callbacks(int pl, int p2, int p3)

{

Hand* h;
callback cb;
subscription *ptr=slist.FirstEntry();
while (ptr) {

h=ptr->hand;
cb=ptr->cb;
ptr=slist.NextEntry();
(h->*cb) (pl, p2, p3);

VideoDirector
The VideoDirector class, declared in viddir.h (see Appendix B), is derived

from Director and handles full screen displays, page buffer management,
and playing motion video clips. Some games might derive their director

CHAPTER 8: Theatrix Technical Specifications

classes directly from VideoDirector, but most of them will use
SceneryDirector, SceneDirector, or both. These two classes are discussed in
the next section.

The main purpose for the VideoDirector class is to encapsulate the full-
screen video functions of the graphics library. VideoDirector initializes the
video system, displays a scene from a .PCX file on the screen, plays .FLC
motion video files, and provides functions to manage the three Mode X video
page buffers.

The class uses the graphics libraries functions to play .FLC files but does
its own timing of the frame rate. An .FLC file includesa field that specifies
its frame rate, but if we tell the graphics library to use it and the program
displays a mouse cursor, there is an annoying flicker of the mouse. You
have to hide the mouse cursor while you display each frame, and the
graphics library uses its own built-in delay to implement the frame rate.
The mouse cursor is hidden during this delay, resulting in the flicker.
Instead of allowing that, we tell the graphics library to ignore the frame rate
and to display one frame at a time. The overriding iterate_director function
gets called once each iteration of the director's loop to check for events, and
that function hides the mouse cursor, displays the frame, restores the
mouse cursor, and then implements its own delay loop.

VideoDirector supports buffer page management with functions that
copy, swap, and synchronize the contents of the three video page buffers. To
use these functions, the programmer must understand the relationship
between the three buffers and the other functions that write to the buffers.
Most of these details are used and hidden by the SceneryDirector and
SceneDirector classes.

VideoDirector supports the display of sprites by providing a low-level
patch facility. A patch is a rectangular subsection of the screen, usually used
to define the space that a sprite occupies. A program can build a table of
patch regions by calling the set_synchpatch function once for each patch.
Later you can use the synch_patches function to copy the patch regions from
either the visible or the hidden page to the active page. You can also work
with individual patches. To use these functions and work with patches, the
programmer must understand the relationship between the three buffers and
the other functions that write to the buffers. Most of these details are used
and hidden by the SceneDirector and Player classes.

161

162 C++ Games Programming

SceneryDirector
The SceneryDirector class, declared in scenery.h (see Appendix B), supports
the display of static scenes where animation is not involved. Game programs
use this class to implement information screens, menus, and help screens.
SceneryDirector is also useful for implementing Myst-like games that
involve high-resolution, 3-D modeled, ray-traced scenes where game motion
is superimposed over the scenery with .FLC sequences.

SceneryDirector implements most of the mouse operations that games
use. The header file defines the DECLARE_MOUSECURSORS,
CURSORLIST, MOUSE_CURSOR, and END_CURSORLIST macros. When a

derived class includes the DECLARE_CURSORLIST macro, the C++

preprocessor translates that statement into the declaration of a static array of

structure objects that represent screen regions. Each element in the array
contains rectangle coordinates, a pointer to a bitstream array that defines a

cursor shape, and the address of a callback function. The
DECLARE_CURSORLIST macro also declares an inline function named
GetMouseCursors that returns the address of the array. This function
overrides a virtual function in the base SceneryDirector class that returns a
null pointer.

The CURSORLIST macro expands into the definition of the array that the
DECLARE_CURSORLIST macro declares. The MOUSE_CURSOR macro

declares initializers to the array. The END_CURSORLIST macro declares the
terminal entry and C++ tokens for the array.

SceneDirector declares its own CUELIST table to be cued when the user
presses the Esc key, space bar, or Enter key. These actions cause the
SceneryDirector object to call stop_director to relinquish control to the next
director.

SceneDirector
The SceneDirector class is derived from SceneryDirector. SceneDirector adds

support for animated sprite actions and is a companion class to the Player
class. The SceneDirector object in control expects to manage all the currently
active Player objects. To make that happen, you construct the SceneDirector
object and then the Player objects that it owns. If a game has several
animated scenes, you should instantiate the SceneDirectors and Players
together so that they are properly associated. You can ensure that things

CHAPTER 8: Theatrix Technical Specifications

work that way by instantiating the Player objects from within the
constructor of the SceneDirector object.

The SceneDirector object maintains a list of the Player sprites that it
controls. The order of that list implements the Z-order of the sprites when
they are displayed on the screen, and sprites change their place in the list to
change their Z-order as they move among one another. On each tick of the
system timer, the SceneDirector object iterates through its list of Player
objects and calls the displayframe function of each one so that the Players
can update their images and positions and copy the images into the active
page. When all the sprites have done that, the SceneryDirector object swaps
the active page—where the sprites wrote updated images—with the visible
page so that the formerly active page is visible and vice versa. Then the
SceneryDirector object calls VideoDirector::synch_patches, which restores
the active page to the original background without sprites ready for the next
timer tick and frame update cycle.

More Hands
All Director classes are derived from Hand. Other Hand classes implement
sprites and play music. This discussion describes them and some of the
classes that support them.

Media
Two of the classes derived from Hand—VocalHand and Performer—include
objects of classes derived from the Media base class. This base class, shown
in the file media.h in Appendix B, defines thc common behavior of sound
clips and graphical images.

Theatrix begins a game by loading into memory all the sound clips and
graphical sprite images from disk file libraries. A structure named MediaClip
describes the clips and images with respect to their dimensions, a pointer to
their contents, and an offset into XMS where the clip or image can be stored.

There can be many libraries of clips and images. Each sprite usually has its
own libraries of sounds and image frames. When the Hand object that
represents a sprite is initialized, it calls the Media::load_library function to
load its libraries into memory. The function reads the library and stores the
clips or images in XMS if XMS is available, and in conventional memory
otherwise.

163

164 C++ Games Programming

The Media class keeps track of these memory libraries with a static array
of objects of the MediaLib structure. This structure includes a pointer to an
array of MediaClip objects, one for each clip or image in the library.

The GetClip function provides access to the clips and images. When a
Hand object wants to make a sound or display its image, it calls GetClip
with library and clip indexes to specify which clip or image to return.

As far as the Media class is concerned, these clips and images are bit
streams to be read from a disk file, stored in memory, and returned to callers
when callers ask for them. The only difference at this level between graphical
images and sound clips is that graphical images have width and height
dimensions and sound clips do not. The derived classes GraphicsMedia and
SoundMedia make that distinction and add nothing more to the behavior of
the base class.

It is up to the callers to GetClip to decide what to do with the bit streams
once they have them.

VocalHand
The VocalHand class, declared in vocal.h (see Appendix B), is derived from
the Hand class. VocalHand objects generate sound effects, and the
VocalHand class gives the object the behavior needed to do that. The class's
public interface includes functions to load sound effects library files, play and
stop sound clips from those files, and test to see whether a sound clip is
playing.

The VocalHand class includes a static object of type SoundMedia and an
integer that specifies which of several sound libraries the object of the class is
using. A Theatrix game maintains one SoundMedia object, which contains
an array of MediaLib objects. At any given time, a VocalHand object is using
one of those MediaLib objects from which to select sound clips to play.

When the Theatrix object calls the static VocalHand::startup function, the
function attempts to load a sound driver program into memory. There are
two possible sound driver programs. The first is DIGPAK’s driver in a file
named soundrv.com. Chapter 11 discusses DIGPAK. The other driver is the
Sound Blaster’s CT-VOICE driver. Both programs are what are known as
loadable drivers, which means that you load them into memory from within
your program and then call functions within them by using offsets from the

CHAPTER 8: Theatrix Technical Specifications

beginning of the buffer where you loaded the driver. The CT-VOICE driver
supports only Sound Blaster sound cards. The DIGPAK driver can be
configured to support one of several sound cards.

The VocalHand:: startup function loads the DIGPAK driverif it exists in
the current logged-on subdirectory. Otherwise, it loads the CT-VOICE driver,
first testing the SOUND environment variable to see where to find the driver
file, which is named ct-voice.drv.

The DIGPAK driver has two function entry points in fixed locations from
the start of the driver's memory. The first pointer points to the driver's
initialization routine. The second pointer points to the driver's de-
initialization routine. The program plays and stops sound clips by generating
a software interrupt through interrupt vector 0x66 with register values
specifying the functionsto be performed.

The CT-VOICE driver has one entry point for all operations and uses
values in CPU registers to specify the functions to be performed. The entry
point is at the beginning of the load module and is a pointer through which
you call to use driver functions. The program initializes the CT-VOICE driver
by calling functions that set the IRQ, the port, and the address of a status flag
that the program uses to test the status of sound clips.

Performer
The Performer class, declared in perform.h (see Appendix B), is derived from
the VocalHand class. Performer adds the ability to display on the screen
graphical images selected from a library of images. A Performer object can
make sounds and display imagesof itself.

The Performer class includes a static object of type GraphicsMedia and an
integer that specifies which of several image libraries the object of the classis
using. A Theatrix game maintains one GraphicsMedia object, which contains
an array of MediaLib objects. At any given time, a Performer object is using
one of those MediaLib objects from which to select images to display. A
Performer object uses its load_gfxlib function to load its library of images
into memory.

When the Performer object determines that an image frame is to be
displayed,it calls one of the image-displaying functions of its base Performer
class. That function calls into the Fastgraph library to perform the display.

165

166 C++ Games Programming

Player
The Player class, declared in player.h (see Appendix B), is used in
combination with the SceneDirector class to give sprites the behavior of
animation. The Player class is derived from the Performer class. It maintains
information about a sprite’s current image number and screen position as
well as whether the sprite is currently in view. It also stores information
about clipping parameters when a sprite is only partially in view.

A Player object assumes that it is being managed by a SceneDirector
object. The Player constructor associates the Player object with the currently
running SceneDirector object. When the Player object's initialize function is
called from the Hand::initialize_hands function, the Player object loads its
graphics and sound effects libraries.

A Player object is programmed to refresh its screen image at a regular
interval specified as a number of clock ticks. Once every clock tick, the
SceneDirector calls the Player::displayframe function. The SceneDirector has
prepared the active page to be updated with new sprite images, and
SceneDirector calls displayframe for each sprite in Z-order sequence so that
the nearest sprite is called last.

The SceneDirector and Player classes coordinate the display of the sprites
on the background scenery. The game-dependent sprite classes derived from
Player specify which images from their libraries are to be displayed and
where on the screen they are to be displayed.

The displayframe function uses a countdown variable to see whether the
Player's refresh interval has expired. If it has, displayframe calls
update_position. A class derived from Player must provide an
update_position function that, based on the game’s circumstances,
establishes the image number and position by calling Player::setxy and
Player::set_imageno. The only valid place to make these changes is from
within the update_position function. If a sprite class calls those functions
from outside the update_position function, the Player class makes note of
that condition, saves the changed values, and applies them just before calling
update_position.

MusicHand
The MusicHand class, declared in music.h (see Appendix B), integrates MIDI
music files into the game. MusicHand is derived from Hand, but it has no

CHAPTER 8: Theatrix Technical Specifications

director. You usually instantiate an object of MusicHand, use that object to
load an extended MIDIfile (.XMI), and play selections from the file.

MIDI songs are supported only through the shareware MIDPAK driver,
which is a loadable device driver very much like the DIGPAK driver. The
MusicHand::startup function loads the driver, initializes it, and establishes
communication with it to play songs. You communicate with the driver by
using interrupt 0x66, just as you do with the MIDPAK driver.

Unlike .GFX and .SFX files and their drivers, only one .XMIfile at a time
may be associated with the MIDPAK driver. The load_score function
allocates memory for the .XMI file, loads it into memory, and calls into the
driver to associate the file’s memory image with the driver.

Playing, stopping, and testing for music clips are done with calls to
interrupt 0x66 with arguments set into the CPU registers.

File Formats
Theatrix uses four types of input files: .PCX files, .GFX files, .SFX files, and
XMI files.

Scenery: PCX
The .PCX format stores background scenery images in 320 x 240, 256-color
format. The file consists of header data, a palette record, and an array of color
bytes, with one byte per pixel.

Sprites: GFX
.GFX files are generated with the GFXMAKE utility found in the \thx\bin
directory of the included CD-ROM. A .GFX file stores a variable number
of graphical bitmaps, each of which can be any size under 64KB. Each
record is an image stored as a binary stream. Figure 8.3 shows the format
of a .GFX file.

167

168 C++ Games Programming

GFX ==
Fil

int

| e width height size data || 11 I aH |Format ee in ong BEL
width height size data §I I IL | 2

int int long char[size]

® eo 0

width height size data -
L I I I] count

int int long char[size]

Figure 8.3 The .GFX file format

The data item is an integer that contains a count of the number of image
records in the file. This count is followed by the image records themselves.
Each record begins with the pixel width and height of the image when it is
displayed on the screen. Next is a long integer that contains the size of the
image bitmap in bytes. This size field is followed by the image bitmap,
consisting of one byte per pixel in the image.

Sound Effects: SFX

.SFX files are generated with the SFXMAKE utility found in the \thx\bin
directory of the included CD-ROM. An .SFX file stores a variable number of
sound clips, each of which can be any size under 64KB. Figure 8.4 shows the
format of an .SFX file.

CHAPTER 8: Theatrix Technical Specifications 169

S FX count

: int
Fi | e size data

ILose|Fo rmat long a _
size data

Nene] [2
long char[size]

® 6 0

size data

[lesen] count
long data[size] Zl

Figure 8.4 The .SFX file format

The .SFX format is similar to the .GFX format except that there are no width
and height fields.

Music: XMI
.XMI files are collections of MIDI files. The format is required by the
MIDPAK driver. The file is built from standard MIDIfiles using a utility
program named MIDIFORM. The MIDIFORM program is part of the
MIDPAK shareware distribution. Chapter 11 discusses MIDPAK.

Blgts [<) Dead Gitieens (0) Sead Bad Guys [|

Shootout (see figure above) is a complex demo game that has the simple, hand-drawn

appearance of many arcade-style games. In SkyScrap (see figure below), the player
pilots a jet fighter across a scrolling landscape and shoots at other craft that are
shooting back. The game uses the joystick or the keyboard to move the jet fighter
around and to fire shots. All the games illustrated in this insert are included on the
accompanying CD-ROM.

The Marble Fighter demo game pits two players in a kick-boxing match. Both players
can be humans, playing at different PCs, or one player can play against the computer.
Marble Fighter uses an intro screen, a help screen, and a menu in addition to the
action part of the game.

A tombstone (see figure above) serves as Marble Fighter's menu which is designed so
that page flipping can be used to change menu selections. The fighter objects can kick,
punch, and block. The fighters use sound effects for hits, groans, and shrieks. The game
records the scoring in video slider bars above the fighters (see figure below).

The skaters in these figures were built with NeoPaint. As a skater moves around in a

figure eight, the program coordinates where the skater displays. To suggest a third
dimension, the game moves the skater up the Y axis when the skateris skating away
from the player (see figure above) and down the Y axis when the skater is skating
toward the player (see figure below).

The sprites in these figures were built from MORAY 3-D models and rendered with
POV-Ray.

Planning the scenes in a game involves figuring out where the user’s viewpoint should
be for each scene.The figures show a map of a town by moving the camera high in the
sky and pointing it downward. The game's camera locations can be determined for
each scene. From these legends it can be determined where to place the camera to
render each scene from the 3-D model, and which scene to change to when the user
moves away from the current scene in one of the four directions.

The figure above is a montage ofall scenes in the Town demo game. Twelve scenes are
not many for a complex game.

Theatris emulates a type of
interactive board game that uses a
variable number of games pieces
that fall into a pit. This game
features a unique menu, the
implementation of the pit using
grid logic, and data structures that
implement the game pieces. The
Tic-Tac-Toe demo game (see
figure below) is a typical board
game. It uses nonanimated sprites
and adds sound effects.

Development
Environment

“Winning isn’t everything, it’s the only thing.”
Vince Lombardi (attributed)

We've revealed the innards of a lot of software and data files so far, and we'll
expose even more in Chapters 10 and 11. All the different components of a
game program can be overwhelming. How does one keep track of all that
stuff? How do several programmers on a development team keep in step?

This chapter explains how we organized the development of the
demonstration games for this book. There were three programmers writing
games and maintaining and modifying the library. Whenever there are
multiple programmers, you'll find that concerns of organization,
collaboration, and coordination become important. It’s easier than you might
think to let things get out of control. You can use this example of one
project’s organization to gather your own resources together and keep them
in tow. You will learn how to manage these items:

© Subdirectories © Data files
© Source code © Using a network
@ Libraries © Configuration management
© Utilities and tools

171

172 C++ Games Programming

The Game Developer's
Subdirectory Structure
Figure 9.1 shows part of the subdirectory structure that you find on the
included CD-ROM. This organization reflects the structure that we used to
develop the demo games for this book. To keep the figure small, we do not
show all the demos—only enough of them to illustrate how we organized our
project.

\THR
——INCLUDE
—LIB—BIN
——DEMOS

——MFIGHTER
EXEC
BUILD
—SFX
——INTRO
——RFIGHT
——CARDS
—FLOOR
——LFIGHT
——HELP
—MENU

——SKATER
BUILDSKATER

—GFX—S FX
—MUSIC

——EREC
—TOWN

EXEC
BUILD
|—ROOMS
—MUSIC—S FR
——SCENES

——SOURCEC[SesTILS

Figure 9.1 Subdirectory structure

CHAPTER 9: Managing the Development Environment

Pay close attention to the subdirectories under the DEMOS subdirectories.
These are the game projects themselves. Each subdirectory under DEMOS
includes all the files needed to build and run one game. Your games might
be organized similarly under an appropriately named subdirectory, such as
GAMES.

Each game subdirectory has an EXEC subdirectory where the executable
game program and its datafiles are built. The BUILD subdirectory is where we
keep all the source code and data to build the game. Below BUILD are more
subdirectories for graphical elements, sound effects, video clips, and so on.

Libraries and tools that are not a part of Theatrix (Fastgraph, and so on) are
installed in their own subdirectories according to the conventions specified
for the programs themselves. We will discuss the organization of these
programs later.

Source Code
There are several source code categories that contribute to the game. In
addition to your source code, there are the source code to the library, some
header files, and the source code to the utility programs.

MAKE.CFG
The subdirectory \THX\SOURCE contains a file named make.cfg that you
must modify in order to use the makefiles with the demo games. These
makefiles include make.cfg, which establishes some global macros for
making the game. You change those macros to reflect where you have
installed the library and tools. Pay careful attention to these macros and
double-check to ensure that you set them correctly. They permit the game
makefiles to find header files, libraries, and tools.

Listing 9.1 shows make.cfg with a typical setup.

173

174 C++ Games Programming

Listing 9.1 MAKE.CFG
JL.

mr

MAKE.CFG - common make configuration (!lincluded in makefiles)
JI
nr

i “==> User-configurable macros <---
fbr mmm eeememeeeeeeei mmmmmcommmn mmm
{# Set DRIVE to where you installed everything
Example: DRIVE=c:

(you can override individual DRIVE usages if you install on

ff multiple drives>)
Priston co re mt mem pL cmb Simin iE EE EE SS SE Sg ele nin me Sis Se
DRIVE=c:

Jism mim sin Ss Snipes sin Hen SE Se Sel sie Ss ie eit me mpmmmm mE mm Se
Set COMPILER to where you installed Borland C++

Example: COMPILER=$(DRIVE)\bc45

Joc om sn mem mime Se se sm cmd ee mim ce de Ree Se eR mse Sd AE ss see
COMPILER=$(DRIVE)\bc45aEhale# Set MODEL to the memory model (t,s,m,c,1,h) of the compile

Example: MODEL=1 (recommended)ffs SE asa se as de Spin Sip SB ols Wain ela wpa ed cin sini Ti
MODEL=1

fhermp grmost danas dy sha sn cir bem Sin sin Hie an se pisie gE fle memati oE ie on 2

Comment out FGLITE to use Fastgraph commercial edition
f= remem arse wrpea ph sis ie pe Sg Se Fp 22 sR Be en BiR Ein ©
FGLITE=1

f= oo Solel dime em ari ale min ili mim pS sp Rn Rien Sie So mnie
Set FASTGRAF to where you installed Fastgraph
Example: FASTGRAF=$(DRIVE)\fg

ims crRiac score en pn Sie SE Sn Emo on ih di le ps Ske sie we ie meen
FASTGRAF=$ (DRIVE) \fg$ (FGLITE)

2 sds an minidiaion Sere nine Sl mimi mit cE SE Bin di IGE BIE 210 BE Besa SEs ae wim in

Set THEATRIX to where you installed Theatrix
Example: THEATRIX=$(DRIVE)\thx

Joi simian mn mimin Sin pm in id ie AleiE San SN Se pie SERS CE BE ea Tn Sie Ria Hie re

CHAPTER 9: Managing the Development Environment 175

THEATRIX=$ (DRIVE) \thxEeRRRELE TEER

Set DTA to where you installed Dave's .TGA Animator
Example: DTA=$(DRIVE)\dtaEEEE RE EEE
DTA=$ (DRIVE)\dta
ffom om am wm mm mm ais HE Gps eine wes am Se CEES bie - ~n min 8 ms mn wn SER
ff Set POVRAY to where you installed POV-Ray
ff Example: POVRAY=$(DRIVE)\povray

fimo mm sin se se ms poms we 416 we mie wie gin EE SEH SHIRE Se ie fin ws ik ola wo a me
{fPOVRAY=$ (DRIVE) \povray

POVRAY=c:\povrayle ——
Borland C++ work space
ffs seme pe we ie a a Seid SE SRE ae plein ns 25 Ralf pom mim man mim orm mim im min

HEADERS=$ (DRIVE) \temp\tcdef.sym
ffi mmimein mie im mim imicwimr wi or we EE RE
Delete the COMPILEDEBUG macro to build without
debugging information in the .EXE

ff =o Sim Rin Si a8 ok mim im BE mn Bimini mim in in mimimimim mim wim mim mimi mimi im mim Sin mie mimi min

COMPILEDEBUG = -v
{ho =m 2s mmm cn 5% OF GE HE SEER HS EE Fi DEMERS FF Se SE FERRE STS HEE
---> End of user-configurable macros {=n
JL.
mw

Set up debugging / nondebugging environment
f= = mm vin moment sis ue mi sis BS REEES S92 HE NE HERR S12 HE SEETE HE 55 Se Bi Se
1if $d(COMPILEDEBUG)

LINKDEBUG = /v
lelse
COMPILEDEBUG = -DNDEBUG

lendifheer# Test for all required user-configurable macrosERR ERES

176 C++ Games Programming

if I$d(DRIVE)

terror DRIVE isn’t defined
lendif
Joe im comida fim me Bango wha mim min ci imimicsiein wie SESE SEER BRR Gr 8 Sie Ridin

1if 1$d(COMPILER)

terror COMPILER isn’t defined
lendif
{fain 2s mmimin mmm mim mie mie ue mim mim petyn SESH Tr man wR RATES EE SR BE FEES
1if 1$d(MODEL)

lerror MODEL isn’t defined
lendif

fPrisic™ “rogers ein on sigan fie wim die min mie cama gl SR pi ER
Vif 1$d(FASTGRAF)

terror FASTGRAF isn’t defined
lendif
frm 2m mimi fie Simin oor rgme imen mi cum in mo ok SHIRA EE BS SE PE fe SS TE SE

tif I$d(THEATRIX)

lerror THEATRIX isn’t defined
lendif
Boer nire rene ne ce sense te sa nmefe pe nnweif $d(POVRAY)

lerror POVRAY isn’t defined
lendif
fhoemif 1$d(DTA)

terror DTA isn’t defined
lendif
0m 55.ii ned WB 5% BH BIRR 5 ok i 0 JR 8iTHXINC=$ (THEATRIX)\include
THXBIN=$ (THEATRIX)\bin
THXLIB=$ (THEATRIX)\1ib\theatrix.1ib
FGINC=$ (FASTGRAF)\include
FGLIB=$ (FASTGRAF)\1ib\fg$(FGLITE)$(MODEL).11ib
COMPILEPARMS=-d -c -w -m$(MODEL) -H=$(HEADERS) $(COMPILEDEBUG)

INCLUDES=-T1$(FGINC) -I$(THXINC)

CHAPTER 9: Managing the Development Environment 177

COMPILE=bcc $(COMPILEPARMS) $(INCLUDES)

LINK=t1ink $(LINKDEBUG) $(COMPILER)\1ib\cO$ (MODEL)

CLIB=$ (COMPILER)\1ib\c$ (MODEL)

EXEC=..\execmmoRReee
.cpp.obj:

$ (COMPILE) {$* }

fromm mmmeeeeePOVFILES=$*.def -i$*.pov -o0$*.tga
POVSW=+v +x

POVDIRS=-1$(POVRAY)\include -1$(POVRAY)\fonts

fhm mmm rececinerea
.pov.pcx:

povray $(POVDIRS) $(POVFILES) $(POVSW)

alchemy -o -p -8 $*.tga
del $*.tga
copy $*.pcx $(EXEC) /Y

del $*.pcxfheGame Source Code
The BUILD subdirectories contain the source code for the game program. We
included all of each game’s header and .CPP files in this one game-related
subdirectory. This subdirectory also contains the game’s makefile.

Header Files
In addition to its own header files, a game program must include the header
files for the class and function libraries that it uses. To build games, we use
the standard C and C++ header files and two other libraries. The header files
for the Theatrix class library are stored in \THX\INCLUDE. The header files

178 C++ Games Programming

for the Fastgraph graphics function library are in the INCLUDE subdirectory
under the subdirectory where you install Fastgraph. Make sure that Fastgraph
is properly installed and that the THEATRIX and FASTGRAF macros in
make.cfg are properly set.

Library Source Code
| Although you might never need to modify the Theatrix class library, its

source code is available to modify or merely for study. The .CPP source code
for the library modules is in \THX\SOURCE\THEATRIX. The header files
used by the library are the same header files that a game includes, and they
are found in \THX\INCLUDE.

Utility Programs Source Code
Theatrix includes several utility programs for building and testing graphical
elements and sound effects. The source code for these programs is found in
\THX\SOURCE\UTILS.

Game Data Files
In addition to source code files, each game consists of one or more other
component files—graphics, sound effects, movies—that contribute to its
build. The organization of these elements into subdirectories is usually
dependent on how many of them are involved and how the game uses them.

Background Scenery Files
If background scenery files are used just as they come from the paint or ray-
tracer tools, you can store their .PCX files directly in the EXEC subdirectory;
they need no conversion or other processing to prepare them for the
executable game. We usually keep originals in subdirectories under BUILD
and allow the makefile to copy them across. This technique permits us to
build an entire game starting with an empty EXEC subdirectory.

Often, the scenery palettes must be normalized with one another and with
the sprites and cursors in the game. In this case you must put the original

CHAPTER 9: Managing the Development Environment

copies of the .PCX files in subdirectories and let the makefile build the
normalized versions for the EXEC subdirectories. To store these originals,
you might use a subdirectory named something like BUILD\SCENES.

Sprite ImageFiles
A game with a few sprites might store all their images in one .GFX file. More
complex games store the images of each sprite in its own .GFX file. Either
approach works, but the latter is more manageable. The game build
procedure converts collections of sprite frame images into .GFX files, and the
makefile contains commands to make these conversions by using the
GFXMAKE utility program.

We use a convention where each .GFXfile is built from sprite image .PCX
files taken from a sprite-dependent subdirectory. For example, the Skater
game, which has only three sprites with only one moving sprite, keeps the
images for the sprites in BUILD/GFX. The Shootout game—which has seven
moving sprites, three doors that open and close, and digits that update a
scoreboard—uses subdirectories for each of these sprite components and
builds a separate .GFX file for each.

Sound Effects
A game may have one or more .SFX files to contain its sound effects. We
usually store the .VOC sound clip files in a subdirectory for each .SFX file to
be built. Most of our games use only one .SFX file and have a BUILD\SFX
subdirectory to hold the .VOC files that make up the .SFX library file.

MIDI Music Files
A game can have only one .XMIfile, no matter how many MIDI clips are
used. We use a subdirectory named BUILD\MUSIC to store the .MID files
that make up the .XMI library of MIDI songs.

Libraries
The object library for the Theatrix class library is stored in \THX\LIB. The
object library for the Fastgraph graphics function library is in the \LIB

179

180 C++ Games Programming

| subdirectory under the subdirectory where you install Fastgraph. Once again,
| make sure that Fastgraph is properly installed and that the THEATRIX and

FASTGRAF macros in make.cfg are properly set.

| DIGPAK/MIDPAK Drivers
Games that include music need a properly set up MIDPAK driver installed
into their EXEC subdirectory. Games with sound effects that are to work
with sound cards other than the Sound Blaster need a properly set up
DIGPAK driver installed into their EXEC subdirectory.

Setting up these drivers involves the users’ participation. They must run
the program named SETUP that accompanies the DIGPAK/MIDPAK
distribution. You cannot automate this process with a makefile unless you
are the only user of your game program. You can, however, include the
procedure in your own setup program or batch file that you distribute with
your game.

The loadable driver modules do not exist before you run the
DIGPAK/MIDPAK SETUP program. The SETUP program generates the files
named soundrv.com, midpak.com, midpak.ad, and midpak.adv. Those files
must be copied into the game’s EXEC subdirectory before the game can
generate sound and music.

Utilities and Tools
There are some utility programs and graphical and sound-generating tools
that you use to build the game’s operating environment. The most obvious
ones are the compiler and its utilities. The make procedure uses several
others discussed here.

Theatrix Utilities
Theatrix includes utility programs that build .SFX sound effect libraries and
.GFX graphics libraries and otherutilities that normalize palettes among the

CHAPTER 9: Managing the Development Environment

many graphical elements of a game. The executables of these programs are in
\THX\BIN. You must have this subdirectory in your DOS path to run these
programs from the makefiles.

POV-Ray
POV-Ray is a ray-tracing program that converts scripted 3-D models into
TGA graphical images. To run the makefile procedure, you must have POV-
Ray properly installed and the subdirectory of its executable files in your
path. We use POV-Ray to render some of our backgrounds and sprites.

Because of an exclusive publishing agreement between POV-Ray’s
proprietors and another publisher, POV-Ray is not included on the CD-ROM
that accompanies this book. It is, however, freely available, and you may use
it without having to pay license or royalty fees. It is available on the
CompuServe Information Service in the GRAPHDEV forum.

Image Alchemy
The Image Alchemy utility program converts bitmapped graphics files from
one format to another. You must have it installed and its executable
subdirectory in your DOS path. We use Image Alchemy to convert from POV-
Ray’s .TGA output to the .PCX format that Theatrix uses.

DTA

One of the functions of Dave’s .TGA Animator (DTA) program is to translate
.PCX frame files into .FLC moviefiles. To use makefiles that build .FLC files,
you must have DTA installed and its executable subdirectory in your DOS
path.

MIDIFORM
MIDIFORM is a utility program that builds .MID files into the .XMI
library format. The program is a part of the DIGPAK/MIDPAK
distribution. You must have MIDIFORM installed and its executable
subdirectory in your DOS path.

181

182 C++ Games Programming

Game MAKEFILE

The makefile in a game pulls together the raw source code, the library files,
and the graphical and sound elements to build the executable game, which
consists of a DOS executable program, .PCX files of scenery, .SFX files of
sound effects, .GFX files of sprite images, and an .XMI file of music. Listing

| 9.2 is the makefile for the Skater game.

Listing 9.2 Skater makefile

include ..\..\..\source\make.cfg

EXEC=..\exec

all : $(EXEC)\skater.gfx
$ (EXEC) \skater.sfx
$ (EXEC) \skater.xmi
$ (EXEC) \pond. pcx
$(EXEC)\skater.exe

echo done

—

—

—

$ (EXEC) \pond.pcx : gfx\pond.pcx
copy gfx\pond.pcx $(EXEC)\pond.pcx

$ (EXEC) \skater.xmi : music\skater.mid
midiform $(EXEC)\skater.xmi music\skater.mid

$(EXEC)\skater.gfx : skater\skaterl.pcx
skater\skater2.pcx
skater\skater3.pcx
skater\skater4.pcx
skater\skater5.pcx
skater\skater6.pcx
skater\skater7.pcx
skater\skater8.pcx
skater\skater9.pcx

CL

aie

et

CHAPTER 9: Managing the Development Environment 183

skater\skaterl0.pcx \
skater\skaterll.pcx \

skater\skaterl2.pcx \

skater\skaterl3.pcx
gfxmake $(EXEC)\skater.gfx @skater\skater.bld

$ (EXEC) \skater.sfx : sfx\water.voc
sfxmake $(EXEC)\skater.sfx sfx\water.voc

$ (EXEC) \skater.exe : skater.obj $(THXLIB)
$(LINK) skater, $(EXEC)\skater,, $(FGLIB) $(THXLIB) $(CLIB)

Vif $d(FGLITE)
echo > $(EXEC)\sk.bat $(FASTGRAF)\fgdriver
echo >> $(EXEC)\sk.bat skater
echo >> $(EXEC)\sk.bat $(FASTGRAF)\fgdriver /U

lendif

Observethe last five lines in the makefile in Listing 9.2. If you build a game
program by linking with the Fastgraph Lite object library, running the game
requires that you first load the Fastgraph Lite fgdriver.exe memory-resident
graphics driver program. When the game exits, you should unload the
memory-resident driver. The makefile builds a batch file named sk.bat that
loads the driver, executes the game program, and then unloads the driver
when the game program terminates.

Game Executable Files
Following a successful make procedure, all the files needed to run the game
should be in the subdirectory named BUILD\EXEC. No other files should be
in that subdirectory, so you can copy everything from it to your distribution
disk. However, when you use BUILD\EXEC for testing your program, there
are residual debugger files with names such as TDCONFIG.TD and TD.TR.
You should delete these files before you build a distribution disk.

Remember that there are files associated with our CD-ROM that you may
not distribute with your executable programs without first obtaining the

184 C++ Games Programming

necessary licenses. The DIGPAK and MIDPAK drivers have licensing
restrictions, which are quite reasonable for commercial distributors and more
than friendly to shareware and freeware distributors. You may not under any
circumstances distribute the Fastgraph Lite shareware driver. You must
obtain a licensed copy of the commercial Fastgraph linkable library and link

your executable programs with that library before you distribute anything.

See Chapter 11 for a discussion of all the tools and how to license them.

Network Rendering
Ray-tracing is a time- and processor-intensive procedure. Some of our games
have many scenes and sprites that we render with POV-Ray. Each time we
change a model, POV-Ray has to render a new image of the scene or sprite
frame. POV-Ray is slow.

In managing our project, we found many uses for a network. One of the
most productive ones off-loads the rendering task onto a server on the
network. We wrote a program named POVNET that runs on a server, waits
for .POV model files to render and launches POV-Ray to render, the models
into image files.

The POVNET program, described in more detail in Chapter 11, runs in a
DOS box in the server (we used a Windows 95 site for the server). Whenever
one of us has a new model to render, we copy the .POV model file into a
designated subdirectory on the server. POVNET observes the new model and
launches POV-Ray. We can monitorits progress from our work stations and
retrieve the newly rendered image file to add to our game when POV-Ray has
completed rendering it.

Configuration Management
Every software development project has this problem. How do you keep up
with all the components of a program or system when more than one
programmer are working independently on common or dependent elements
of the system? With a one-person project,itis easy to lose control when there
are many elements in a complex system. As you add people, the potential for

error rises exponentially. A game project might involve many people—

CHAPTER 9: Managing the Development Environment 185

programmers, artists, sound effects specialists, musicians, script designers,
and so on. Each of them can be building and adding pieces to the game as
development proceeds. Coordination and synchronization of the various
pieces and parts can be an arduous task. There are steps you can take to get it
under control.

Formal development projects use computer assisted software engineering
(CASE) and version-control tools. We think that these tools not only are
overkill for a game project, but they also tend to formalize, institutionalize,
and bureaucratize an activity that starts out mainly to be fun.

We are going to discuss guidelines that you can use to implement
procedures to help you control your project. They work if everyone is easy to
get along with and can adjust to inconvenience from time to time. If, however,
there are prima donnas on your team who are disagreeable and uncooperative,
then these guidelines will not work. Neither will anything else.

The Objective
Your objective in software configuration management is to make sure that
everyone works from a common baseline of software components and that
when someone changes a part of the system, the following things happen:

© The change is tested with the baseline and worksas intended.
© The change is tested to ensure that it does not interfere with, conflict

with, or otherwise compromise the work that others are doing.
© When approved, the change is integrated into the baseline and

everyone gets the new stuff.

Those objectives seem reasonable and attainable. But anyone who has
worked on a software development project of any size knows how elusive
these goals can be. Game projects are more fun than other jobs, but they are
as susceptible to the vagaries of a disparate staff as any other kind of
cooperative enterprise.

The Network
The network is a valuable tool in keeping a grip on the software
configuration, especially if the network supports primitive groupware actions
such as broadcast messages and protected read or write access at the

186 C++ Games Programming

subdirectory level. Netware, Windows NT, Windows for Workgroups, and
Windows 95 all support mail and password-protected read-only access to
remote subdirectories.

The Configuration Manager
In a big software development project, configuration management is a full-

time job, perhaps even involving a staff of several people who watch over the
configuration and keep it under control.

A game project will not usually be that big unless you are building one of

those extravaganzas that involve Hollywood actors and who knows what.
Nonetheless, on any multiperson software development project, the
responsibilities of configuration manager must be assigned. One person
should assume those duties, and the other team members must acknowledge
and respect that person’s authority.

This delegation of authority introduces an anomoly. The boss never wants
the mundane duties of configuration manager. Yet the boss is usually writing
code. All programmers view configuration management as a pain in the
hindquarters—an impediment to getting things done—because it places a

wall between them and the current baseline. They have to go through a
bothersome procedure to implement a change. The boss, being a programmer,
runs into that wall just like everyone else and sometimes uses his or her
position to overrule the configuration manager's authority. If you are the
boss, don’t let that happen.

Nobody likes the configuration manager, so don't take the job if you need
to be liked.

The Baseline
The baseline is a read-only repository of source code and raw graphics and
sound files. Team members can retrieve files from the baseline, but only the
configuration manager can change files in it or add files to it. The baseline
represents the currently approved version of the system.

CHAPTER 9: Managing the Development Environment

Making Changes
When team members work on parts of the system, they work with local
copies of the baseline. The configuration manager maintains a record of
which files are likely to change. Therefore, the configuration manager always
knows—or should know—which files are being modified by whom, and, in
rare cases, which files are concurrently and independently being modified by
more than one team member.

When a change is completed, the team member submits it to the
configuration manager and the other team members for review. You can use a
public subdirectory on the file server for these submissions. The
configuration manager then does whatever is necessary to achieve the three
objectives listed above, sometimes merging the work of more than one team
memberto install their respective changes.

If you do all these things, you will maintain control of the configuration of
your software. It is, however, a fact of software development that people
throw out the time-consuming and bothersome control mechanisms when
the deadlines loom near. You will, too. So did we.

187

Example Game
Programs

“Few things are harder to put up with than the annoyance of a good example.”
Mark Twain

OK, we understand. Most programmers turn to this chapter first. You want to
get to the action straight away. Well, you are right. This is where the real fun
starts. We are going to put into practice everything that we discussed in
Chapters 1 through 9 (which you may not have read yet) by building some
game programs. But if you skipped Chapter 5, you might want to return and
read it now. This discussion starts there. Chapter 5 discusses the levels of
abstraction at which you can work and explains the Theatrix class library
hierarchy. This chapter completes that discussion by describing the demo
game programs at each level of abstraction and teaches you how to
implement different game features and styles.

Each demo program has lessons to be learned, and our discussions
concentrate on what is unique about the lessons and the concepts the lessons
introduce. You will learn about:

© Instantiating and running games © Music
© Using the joystick and mouse © Menus and help screens
© Sound effects © Multiple-player games
© Video clips © Games with many sprites
© Sprite animation © Background scrolling

189

190 C++ Games Programming

Textimode
The first game is called Textmode because it operates in the PC’s text video
mode at the lowest level of abstraction in a Theatrix game. Textmode teaches
you how to derive a game class from the Theatrix class, derive Director and
Hand classes, register for event cues, and use the keyboard and joystick.

The Textmode demo is not a graphics game. The program merely
demonstrates abstraction level 1 of Theatrix. By staying in text mode, we can
concentrate on program architecture and postpone our discussions of bitmaps

| and video modes.

The TextModeApp Class
Here is the TextModeApp class:

class TextModeApp : public Theatrix |
TextModeDirector* dir;

public:
TextModeApp();
~TextModeApp()

{ delete dir; }

Yi

TextModeApp::TextModeApp() : Theatrix("Text Mode Demo")

{

dir=new TextModeDirector;
use_video_mode(3);

}

When the TextModeApp constructor runs, it passes a string to the Theatrix
constructor. This string appears on the top of the startup display, and you use
it in your games as a title. Next, the constructor creates an instance of
TextModeDirector, to be discussed soon. The call to use_video_mode

informs Theatrix that the game uses text mode 3 instead of the default video
mode.

The TextModeApp destructor deletes the TextModeDirector object created
| by the constructor.

CHAPTER 10: Example Game Programs 191

The main Function
Hereis the Textmode program’s main function:

int main()
{

TextModeApp app;
app.enabTle_joystick();

app.go();
return 0;

}

The main function creates an instance of our TextModeApp class. The demo
uses the joystick, so Theatrix is notified with a call to enable_joystick. Then
the program calls the Theatrix::go member function through the derived
TextModeApp object. This function call tells Theatrix to initialize itself and
start the game. When that function returns to main, the game is over.

The TextModeDirector Class
The following code shows the TextModeDirector class:

class TextModeDirector : public Director {

void on_key(int key);
void on_timer()

{ cout << "timer tick...\n"; }

void on_joystickbuttonl()
{ cout << "joystick button 1\n"; }

void on_joystickbutton2()
{ cout << "joystick button 2\n"; }

void on_joystickmove(int x, int y)
{ cout << "joystick moved: " << x << ' ' Ky << "\n'; }

DECLARE_CUELIST

public:
TextModeDirector() { }

1;

192 C++ Games Programming

The TextModeDirector class has five callback functions. The on_timer
member function displays a message to demonstrate that the function
received the cue. The on_joystickbutton1 and on_joystickbutton2 functions

report that their respective joystick button cues were received. The
on_joystickmove function reports that the joystick is away from center and
what the joystick position coordinates indicate.

The DECLARE_CUELIST statement tells the compiler that a CUELIST
table accompanies this class.

The on_key function, shown next, contains a switch and tests for two
keys: the space bar and the Esc key.

void TextModeDirector::on_key(int key)
{

switch (key) {

case SPACEBAR:

cout << "space bar pressed...\n";
break;

case ESCAPE:

stop_director();
break;

default:
break;

}

This code demonstrates that a callback function can be used for multiple
events. In this case, the on_key function is called when either the space bar
or the Esc key is pressed.

The CUELIST table, shown next, tells Theatrix to call on_key when the
space bar or the Esc key is pressed, to call on_timer every second, and to call
the joystick functions when you wiggle or click the joystick.

CL—
CHAPTER 10: Example Game Programs 193

CUELIST(TextModeDirector)
KEYSTROKE (SPACEBAR, on_key)
KEYSTROKE (ESCAPE, on_key)
TIMER(1,on_timer)
JOYSTICKBUTTON(BUTTONONE, on_joystickbuttonl)
JOYSTICKBUTTON(BUTTONTWO, on_joystickbutton2)

JOYSTICKMOVE (on_joystickmove)
ENDCUELIST

The Startup Screen
When you run Textmode, it displays the standard Theatrix startup screenshown in Figure 10.1.

Figure 10.1 Theatrix startup screen

Text Mode Demo

TIMERSERVER: hooked timer interrupt...
KEYDOWNSERVER: hooked timer interrupt...
Tooking for sound card...
CT-VOICE driver initialized...
A220 110 D1 H5 P330 T6

using port 220

using irq 10

looking for music driver...
music driver not initialized...

Move joystick to upper left and press a button
upper left: 70/70

Move joystick to Tower right and press a button
lower right: 147/145

starting...

194 C++ Games Programming

The information displayed on the startup screen depends on what the game

includes. The top of the screen is the game's title, which you provide as an

argument to the Theatrix class constructor. When the main function calls

Theatrix::go, the rest of the screen is displayed.

In this example, the system found the CT-VOICE driver for sound effects,

even though Textmode does not use sound effects. The startup screen reports

the setting of the BLASTER environment variable and the port and irq values

that Theatrix has extracted from that variable.

The music driver is not found in this setup, and the startup screen reports
that condition.

Because the program has enabled the use of the joystick, Theatrix asks the

user to move the joystick and press buttons to calibrate the joystick’s

extreme values and its center location. Then Theatrix starts the game.

Running the Textmode Demo
The Textmode game's only actions are to write text messages to the screen

when its callback functions execute. There are callback functions for the

space bar keystroke, the Esc keystroke, timer ticks, joystick buttons, and

joystick movements. Figure 10.2 shows a typical Textmode game session.

TE

Ie

CHAPTER 10: Example Game Programs 195

Figure 10.2 Textmode running

Joystick moved: -51
Joystick moved: -51 0

Joystick moved: -49 0

timer tick...
timer tick...
timer tick...
timer tick...
Joystick button 1

joystick button 1

timer tick...
timer tick...
timer tick...
space bar pressed...
timer tick...
timer tick...
timer tick...
space bar pressed...| timer tick...

While the demo runs, you see the “timer tick...” text message displayed onceevery second. This text is displayed as the result of a timer cue, which wasrequested to send one cue per second. Now press the space bar. A new textmessage appears, indicating that the space bar was pressed and the programsent the keypress cue to report that event. Move the joystick around. Whilethe joystick is off center, the system cues the program, and the programdisplays text messages to report the joystick position. To exit from theprogram, press Esc at any time.
Timer tick messages are sent once every interval as specified by theCUELIST tables’s TIMER statement. Joystick movement messages continueto be sent as long as the user holds the joystick away from the centerposition. Joystick button messages continue to be sent as long as the userholds the joystick button down. When you press the Esc key, the game stopsand exits to DOS.

196 C++ Games Programming

Mouse
The Mouse program demonstrates the use of the mouse in a game. The

program is not so much a game as it is a demonstration. You don’t play for

points or attempt to vanquish opponents. You just run the program, move the

mouse, and observeits effects. Figure 10.3 shows the demo in progress.

Figure 10.3 Running the Mouse demo

The MouseDemo Class
The MouseDemo class is derived from SceneryDirector so that it can use the

mouse cursor shapes feature of that class:

class MouseDemo : public SceneryDirector {

void display();
void hide();
void on_quit(int,int,int);
void on_click(int x,int y,int b);
void on_move(int x,int y,int b);
void on_centerclick(int, int);

DECLARE_CUELIST

LW
CHAPTER 10: Example Game Programs 197

DECLARE_MOUSECURSORS

public:
MouseDemo()

{}
ti

CUELIST(MouseDemo)

MOUSECLICK(RIGHTMOUSEBUTTON, on_quit)
MOUSECLICK(LEFTMOUSEBUTTON,on_click)
MOUSEMOVE (on_move)
KEYSTROKE(ESC, on_quit)

ENDCUELIST

CURSORLIST(MouseDemo)

MOUSE_CURSOR(0, 0,105, 79,UPPERLEFTARROWCURSOR, 0)
MOUSE_CURSOR(106, 0,211, 79,UPARROWCURSOR, 0)
MOUSE_CURSOR(212, 0,319, 79,UPPERRIGHTARROWCURSOR, 0)

MOUSE_CURSOR(0, 80,105,159, LEFTARROWCURSOR, 0)
MOUSE_CURSOR(106, 80,211,159,CENTERCURSOR, on_centerclick)
MOUSE_CURSOR(212, 80,319,159,RIGHTARROWCURSOR, 0)

MOUSE_CURSOR(0,160,105,239, LONERLEFTARROWCURSOR, 0)
MOUSE_CURSOR(106,160,211,239,DOWNARROWCURSOR, 0)

MOUSE_CURSOR(212,160,319,239, LONERRIGHTARROWCURSOR, 0)
ENDCURSORLIST

The cursor shapes called out in the MOUSE_CURSOR statements are takenfrom the standard shapes that the SceneryDirector class provides.

Mouse Events
The program’s callback functions draw shapes on the screen by using some ofthe Fastgraph library's graphical functions. For example, the on_movecallback function is called whenever the mouseis moved and calls fg_moveand fg_circle:

198 C++ Games Programming

void MouseDemo::on_move(int x,int y,int b)

{

fg_move(x,y):
mouse_invisible();
fg circle((b & LEFTMOUSEBUTTON) 7 5 : 1);

mouse_visible();
}

Moving the mouse draws a circle. If the left mouse button is not down, the

circle is tiny, and the effect is that of scribing a wavy line on the screen. If the

left mouse button is down, the program draws a larger circle, which seems to

drag the circle around the screen, leaving trails.

Your game programs might or might not use the underlying Fastgraph

graphical functions. We use them here only to demonstrate the behavior of

the mouse events. Games involving scenery and sprites do not need to

address these lower levels of abstraction.

Planet
The Planet demo displays a small moon bouncing around the screen over the

top of a large planet. The file named planet.pcx contains an image of the
background scene, which depicts the planet. The file named sphere.pcx
contains an image of the sprite.

The game achieves this bouncing effect by doing the following:

1. It draws the background on a hidden video page.

9. Tt draws the moon on top of the background image.

3. It swaps the video pages so that the newly constructed image becomes
visible.

4. Tt repeats these steps until the Esc key is pressed.

The DemobDirector Class
The DemoDirector class displays the background, creates and updates the

moon, and ends the demo when the user presses the Esc key:

TN

CHAPTER 10: Example Game Programs 199

class DemoDirector : public VideoDirector {
void display();
void on_timer();
void on_esc(int);
Sprite* moon;
int x,y;
int xinc,yinc;

public:
DemoDirector():

3

control of the game, so this is where we write our code to display thebackground.
The DemoDirector constructor is shown next:

DemoDirector::DemoDirector()
{

moon=new Sprite("demo.gfx","demo.s fx");
X=y=2(0:

xinc=yinc=INC;
}

The first line creates an object of a class called Sprite, which we will look atsoon. The Sprite object is the moon, which moves over the background. Notethat the Sprite constructor takes two parameters, One is the .GFX librarythat contains the moon's bitmap image to display on the screen, and theother is the .SFX library, which contains one sound clip. (The moon makes anoise when it changes direction.)
The next two lines in the DemoDirector constructor initialize some

200 C++ Games Programming

DemoDirector first displays the background on the screen from its

overridden display member function. DemoDirector::display is shown here:

void pemoDirector::display()
{

init_video();
show_pcx("planet. pcx");
swap_video_pages();
synch_video_pages();
fil 1_background_buffer(active_page());

J

This seems like a lot of code just to display a background, so let's consider

what's happened. The functions called by the display function are members

of the base VideoDirector class. The init_video member function clears the

video pages and initializes the page-flipping mechanism. The show_pcx

function displays the .PCX file planet.pcx on the screen. Three more things

need to happen. First, only the hidden page contains the .PCX image at this

point. This hidden page is also referred to as the active page, because all

graphics calls affect the active page instead of the visible page. Recall a

previous discussion on page-flipping. While the user is looking at the visible

page, we are constructing a new page on the active page. So

swap_video_pages makes our new image visible, and now we have a new,

active page (the page that was previously visible and that, at the moment,

contains nothing related to the game).

The second thing that needs to happen is the call to synch_video_pages,

which synchronizes the two video pages so that they both contain the image

that was just constructed and that is now being viewed.

Now one task remains. We need to make a copy of the background that we

will never overwrite. This copy is kept in the background page buffer. The

call to fill_background_buffer makes this copy. The parameter specifies that

the active page is the source for our background image. Because both the

active page and the visible page contain identical imagesat this point,it does

not matter which page we use.

CHAPTER 10: Example Game Programs 201

The DemoDirector class needs a CUELIST table:

CUELIST(DemoDirector)
TIMER(18,0n_timer)

KEYSTROKE (ESC, on_esc)
ENDCUELIST

The TIMER statement in the CUELIST table tells Theatrix to call ouron_timer callback 18 times every second and to call our on_esc function
whenever the user presses the Esc key. Here is the on_esc function:

void DemoDirector::on_esc(int)
{

stop_director();
}

When the user presses the Esc key, the DemoDirector object stops itself.
The on_timer function is shown next:

void DemoDirector::on_timer()
{

moon->move_to(x+=xinc,y+=yinc);
swap_video_pages();
if (x<5 || x>280) {

xinc=-xinc;
moon->bounce();

}

if (y<6 || y>190) {

yinc=-yinc;
moon->bounce();

}

This code is more complicated but is not hard to understand. The first line
tells the moon to move to a new location. Once the moon has displayed
itself, the video pages are swapped so that the new image becomes visible.

aa
202 C++ Games Programming

The if statements after swap_video_pages reverse the moon’s direction

when it gets too close to the edge of the screen. When the moon's direction

changes, the Sprite::bounce memberis called to play a sound effect.

The Sprite Class
The Sprite class declaration looks like this:

class Sprite : public Performer {

char gfx1ib[13];
char sfx1ib[13];
int image;
int w,h;

int xq[2];
int yql2]:

public:
Sprite(char* gfx1ib,char* sfx1ib);
void initialize();
void move_to(int x,int y);
void bounce();

13

The Sprite constructor initializes the object’s data members:

Sprite: :Sprite(char* gfx1ibname,char* sfx1ibname)
{

strepy(gfx1ib,gfx1ibname);
strcpy(sfx1ib,sfx1ibname);
image=IMAGENO;

}

When the game starts, the sprite must load its .GFX and .SFX libraries into

memory. Each Hand has a virtual member function called initialize that is

called once per execution of the game when the game begins. This function is

where the .GEX and .SFX libraries are loaded. The Sprite:initialize member is

shown next:

CHAPTER 10: Example Game Programs 203

void Sprite::initialize()
{

load_gfx1ib(gfx1ib);
load_sfx1ib(sfx1ib);
w=get_image_width(image);
h=get_image_height (image);
xq[0]=xq[1]=0;
yq[0]=yq[1]=0;

}

The initialize function loads its libraries and calls two VideoDirector
member functions to get the height and width of the image. It setsits initial
screen position to 0/0.

The Sprite::move_to function changes the moon's position at each tick of
the timer. The function is defined this way:

void Sprite::move_to(int newx,int newy)
{

static int qi;
VideoDirector::restore_patch(xqlqil,yqlqi]l,

xqLqil+w-1,yqlqil+h-1);
show_image(newx,newy,image);
xq[qil=newx;
yqlqil=newy;
qi=(qi+1)%2;

}

Here we learn more about the page-flipping technique at this level of
abstraction. First, Sprite::move_to has to erase its old image before drawing
the new one, which is not as easy as it sounds. Sprite cannot simply
rememberits location and then erase itself at the same location—it operates
on two pages. Sprite must maintain a small circular queue in order to track
where it was last drawn on each page. The queue can hold only two values:
one for each page. Two queues are maintained: one for the X value and a
second one for Y.

204 C++ Games Programming

The VideoDirector::restore_patch function copies rectangles from the
background buffer to the active page. (Remember that we filled the
background buffer with a copy of the background image in
DemoDirector::display.) The call to restore_patch uses the queue to look up
where the sprite was drawn on the active page, and restore_patch erases the
sprite. Then the image is drawn at the new location with a call to
show_image. Now the queue must be updated with the newx and newy
values. Finally, gi, which toggles between 0 and 1 to access the queue, is
updated.

The PlanetDemo Class
The PlanetDemo class derives from the Theatrix class to implement and run
the game:

class PlanetDemo : public Theatrix {

public:
PlanetDemo() : Theatrix("Planet")

{ demo=new DemoDirector; }

~PlanetDemo()
{ delete demo; }

private:
DemoDirector* demo;

bs

The PlanetDemo constructor instantiates a DemoDirector object from the
free store. The destructor deletes that object.

The main Function
The main function instantiates an object of type PlanetDemo and calls its go
function. When the go function returns, the gameis over:

void main()
{

PlanetDemo demo;

demo.go();

CHAPTER 10: Example Game Programs 205

Figure 10.4 is a screen shot taken from the Planet demo game.

Figure 10.4 The Planet demo

Tic-Tac-Toe
The Tic-Tac-Toe demo game is a typical board game. It demonstrates the use
of the Performer class as a base from which to derive nonanimated sprites.
The game also adds sound effects. Each move is punctuated by a silly spoken
message from the game to the player. Figure 10.5 shows the board with a
game under way.

Figure 10.5 The Tic-Tac-Toe board

206 C++ Games Programming

The game uses a CURSORLIST table to divide the board into its nine
segments, as shown here:

CURSORLIST(TicTacToe)

MOUSE_CURSOR(70, 18, 128, 75, UPCURSOR, positionl)
MOUSE_CURSOR(136, 18, 200, 75, UPCURSOR, position2)
MOUSE_CURSOR(208, 18, 266, 75, UPCURSOR, position3)
MOUSE_CURSOR(70, 82, 128, 146, UPCURSOR, position4)
MOUSE_CURSOR(136, 82, 200, 146, UPCURSOR, position5)
MOUSE_CURSOR(208, 82, 266, 146, UPCURSOR, position6)
MOUSE_CURSOR(70, 154, 128, 210, UPCURSOR, position7)
MOUSE_CURSOR(136, 154, 200, 210, UPCURSOR, position8)
MOUSE_CURSOR(208, 154, 266, 210, UPCURSOR, position9)

ENDCURSORLIST

The game player makes the first move by clicking on one of the segments.
Each time the player makes a move, the game posts that move and calculates
its own next move.

Sound Clips
Before making a move, the game speaks a phrase, the contents of which
depend on whether the game is making a winning move, blocking the
player’s winning move, or simply getting the next available space. Here is
how the game identifies the different phrases:

enum soundclip {

iwin = 1,
youwin,

tie,
notthere,
hmm,

ohno,
nowwhat

CHAPTER 10: Example Game Programs 207

A Voice Class
The game uses a Voice class to encapsulate the sound effects:

class Voice : public VocalHand {

void initialize()
{ Toad_sfx1ib("ttt.sfx"); }

public:
Voice(Director *dir) : VocalHand(dir)

{1}

1s

Playing Sound Clips
The game instantiates an object of this class and uses the object to speak the
phrases in the .SFX library, as shown here:

// ---- computer says something
void TicTacToe::say(soundclip clip)
{

voice->play_sound_clip(clip);
while (voice->sound_clip_is_playing())

}

Building the .SFX Library
The makefile must cooperate in the building of the .SFX library so that the
sound effects are in proper sequence as defined by the soundclip declaration.
The makefile’s entry for building the .SFX file is as follows:

$(EXEC)\ttt.sfx : sfx\iwin.voc \
sfx\youwin.voc \
sfx\tie.voc \
sfx\notthere.voc \
sfx\hmm.voc \
sfx\ohno.voc \
sfx\nowwhat.voc

sfxmake $(EXEC)\ttt.sfx $**

| 208 C++ Games Programming

Skater
The Skater demo program illustrates sprite animation at thefifth and highest
level of abstraction. The Skater demo also uses music and sound effects. You

learned from the discussion of Tic-Tac-Toe how to add sound effects to a

game. Now we'll discuss how to add music.
The Skater demo is found on the included CD-ROM in the

\THX\DEMOS\SKATER directory. The demo involves a skating pond with
three skaters. Actually, only one of the skaters is skating; the other two are

just standing. The skater is doing a figure eight around both of the standers.
The demo illustrates the use of Player and SceneDirector, and is also an
example of how to manage the Z-order of sprites. The skater, in the course of

his figure eight, skates at one point behind thefar stander, then, at the center
of the eight, between the two standers, and, finally, in front of the near
stander. This pattern is made possible by changing the skater’s Z-order
relative to the two standing sprites.

The Pond Class
First, a class named Pond is derived from SceneDirector:

class Pond : public SceneDirector {

Stander *standerl;
Stander *stander?;
Skater *skater;
MusicHand *conductor;
void on_timer();
void on_enter();
void display();
void hide();

public:
Pond();
~Pond();

1s

CHAPTER 10: Example Game Programs 209

Aside from the constructor and destructor, the only member function we’ll
discuss here is on_timer, which is a callback. There are also three pointersthat point to the three skaters and a pointer to a MusicHand object. (Notice
that because two of the sprites don’t actually skate in the demo, they arecalled Standers.) Let’s look first at the constructor:

Pond::Pond() : SceneDirector("pond.pcx") {

/1 --- most distant stationary sprite
standerl = new Stander;
standerl->set_imageno(10);
standerl->setxy(180,100);
standerl->appear();

/1 --- closest stationary sprite
stander2 = new Stander;

stander2->set_imageno(9);
stander2->setxy (140,130);
stander2->appear();
// --- moving sprite
skater = new Skater;
conductor = new MusicHand("skater.xmi");

}

In addition to creating two Stander and one Skater objects, the constructor
gives instructions to the Stander objects. The set_imageno member function
tells the Stander which .GFX library image to use to draw itself. The setxy
member tells the Stander where to stand. Finally, the appear member tells
the Stander that it is visible. Stander is derived from Player; these member
functions are defined in Player.

210 C++ Games Programming

The Pond destructor deletes the three objects created in the constructor.
The on_timer callback function implements most of the Pond class's
functionality:

void Pond::on_timer()
{

SceneDirector::on_timer();
if (skater->steps == 0) {

switch (skater->mode) {

case 1:

// -- front lateral segment

// -- set moving sprite in front of others
MoveZToFront(skater);
break;

case 3:

case 7:

// -- center lateral segment

// set moving sprite between other two

// ChangeZOrder(skater,stander2);
break;

case 5:

// -- rear lateral segment

// set moving sprite behind others
changeZOrder(skater,standerl);
break;

default:
break;

}

Here is how the Z-order is maintained during the figure eight. Each mode of

Skater represents a segment of the figure eight. Each section in the switch
statement handles a different segment. For some segments (mode 2, for
example), no change in Z-order is needed, but others require that the skater’s

CHAPTER 10: Example Game Programs

Z-order change, and thisis done with calls to the SceneDirector::.changeZ Order
member function.

The first thing that the Pond::on_timer callback does is to call
SceneDirector::on_timer. This Pond::on_timer member function overrides
SceneDirector::on_timer, which needs to execute, so the overriding function

calls the overridden function. Because SceneDirector::on_timer is responsible
for updating the Player objects, forgetting to call it produces unwanted
results.

The Skater Class
Now let’s examine the Skater class:

class Skater : public Player
{

short int steps;
short int mode;

friend class Pond;
void on_enter();

protected:
DECLARE_CUELIST

public:
Skater();
virtual ~Skater() { }

void update_position();
bs

A callback function named on_enter is defined, and because the callback is to
be connected to the Enter key cue via the CUELIST macros, the
DECLARE_CUELIST statement is required. A member function called
update_position overrides Player::update_position, which is called by
SceneDirector for each frame interval. Player::update_position gives the
Player an opportunity to change its location and image.

The steps data member keeps track of how far along the skater is in a
segment. It is incremented by update_position at each frame interval until it
has reached the length of the segment the skateris currently on, whereupon

211

212 C++ Games Programming

a new segment starts. The mode memberindicates which segment the skater
is on.

The Skater constructor looks like this:

Skater::Skater() : Player("skater.gfx","skater.sfx")
{

setxy (90,145); // initial position on pond

set_imageno(1); // first skater frame

appear();
steps = 0;
mode = 1;

}

The Skater constructor passes two file names to the Player constructor. This
is because Player loads the .GFX and .SFX files for you.

Player updates the screen automatically. The Skater class decides where
its sprite should be and what it should look like, and the Player class takes
care of displaying it.

The setxy member function tells Player where to draw itself (when the
time comes). We saw this member when Pond was creating the Stander
objects. The set_imageno function tells Player which bitmap image in the
.GFX library to use to draw the skater. The appear function tells the Skater
that itis visible. Finally, the steps and mode data members are initialized.

The update_position member function, shown in Listing 10.1, is where all
the action occurs. The skater’s location is calculated here, depending on the
values of mode and steps.

CHAPTER 10: Example Game Programs 213

Listing 10.1 The update_position member function
void Skater::update_position()
{

switch(mode)
{

case 1:

case 3:

case 5:

case 7:

// --- side to side movement

if (++steps == sidesteps) {

steps = 0;
set_imageno(++mode) ;

break;
}

if (mode & 2) // modes 3 and 7: to the left
setx(getx() - sstepincr);

else
setx(getx() + sstepincr);

break;
case 2:
case 4:
case 6:
case 8:

// --- front or back movement

if (++steps == fwdsteps) {

steps = 0;
if (mode == 8)

mode = 0;
set_imageno(++mode) ;
break;

}

if (mode < 6)
sety(gety() - fstepincr);

else

214 C++ Games Programming

sety(gety() + fstepincr);
break;

case 9:

setinterval(3); // slow down refresh rate
set_imageno(13); // 1st frame of ice-breaking splash
mode++;

play_sound_clip(1);
break;

case 10:
set_image(12); // 2nd frame of ice-breaking splash
mode++;

break;
case 11:

set_imageno(13); // 3rd frame of ice-breaking splash
mode++;

break;
case 12:

set_imageno(11); // hole in ice
mode++;

steps = 0;
break;

default:
if (steps+t == 30)

stop_director();
break;

}

The figure eight is broken into eight modes. The odd-numbered modes
represent the left/right segments of the squared figure eight, and the even-
numbered modes represent the far/near segments. When the user presses
Enter (we'll look at that callback next), the modeis set to 9, which initiates a

sequence in which the skater falls through the ice. The cases near the end of
the function handle this sequence.

CHAPTER 10: Example Game Programs 215

Now let's look at the OnEnter callback function:
void Skater::on_enter()
{

if (mode < 9)int yp = 35;
if (mode == 3 || mode == 7)

yp=25;
else if (mode > 3 && mode < 7)

yp=15;

setxy(getx()-10,gety()+yp);
mode = 9;

}

First, the mode is checked. If itis less than 9, we know thatthe figure eight is
still in progress. If it is, a test determines where the splash sequence should
be drawn. Finally, the mode is set to 9, which initiates the splash sequence.

The SkaterDemo Class
The SkaterDemo class derives from the base Theatrix class and is the vehicle
with which the program initializes and runs the game:

class SkaterDemo : public Theatrix {

Pond* pond;
public:

SkaterDemo() : Theatrix("Pond")
{ pond=new Pond; }

~SkaterDemo()
{ delete pond; }

3

216 C++ Games Programming

The main Function
The main function looks like most other main functions in a Theatrix game:

int main()
(

SkaterDemo demo;

demo.go();
return 0;

}

Unlike many of the other demo games, this one’s graphical elements—the
Player objects—deal only with what should be drawn and where. The
previous demo (the Planet demo) had to deal with not only what should be

drawn and where but also how large the image was and where on the last
video page the sprite appeared. Although Performers and VideoDirectors are
powerful, you will probably use Players and SceneDirectors more often
because they encapsulate more of the details of animation than do the classes

at the lower levels of abstraction.

The MusicHand Object
The Skater program’s Pond class has a pointer to a MusicHand object. The
constructor initializes that pointer:

class Pond : public SceneDirector {

MusicHand *conductor;
void display();

public:
Pond();
~Pond();

1

Pond: :Pond() : SceneDirector("pond.pcx™)
{

iy aE
conductor = new MusicHand("skater.xmi");

CHAPTER 10: Example Game Programs 217

Building the .XMI Library
The file named skater.xmi is an Extended MIDI library in the format
supported by the MIDPAK driver. The makefile builds the .XMIfile from one
or more .MID files:

$(EXEC)\skater.xmi : music\skater.mid
midiform $(EXEC)\skater.xmi music\skater.mid

In this case, there is only one .MID file, and it is in the BUILD\MUSIC
subdirectory for the game program.

Playing a Music Clip
The Skater game plays one music clip from the beginning of the game until
the player ends the game or until the music clip completes. The game startsplaying the music clip by overloading the Director::display function:

void Pond: :display()
{

SceneDirector::display();
conductor->play_music_clip(1);

}

The play_music_clip function stops any previous music clip that might be
playing.

Stopping a Music Clip
If the music is still playing when the player stops the program (by pressing
Enter or Esc), the overloaded hide function stops the music clip:

void Pond: :hide()
{

conductor->stop_music_clip();
SceneDirector::hide();

}

218 C++ Games Programming

You can stop a music clip at any time in a game by calling the
stop_music_clip function. If no music clip is playing, there is no effect.

Testing for Music Playing
At every timer interval, the on_timer function tests to see whether the skater

sprite is still skating and whether the music clip was started and has now
completed. If all these conditions are true, the program calls the on_enter
function to stop the program.

The on_enter function is the callback that runs when the user presses the
Enter key. This function causes the skater sprite to crash through the ice and

then terminates the program. By calling this function when the music stops
playing, the program crashes the sprite through the ice at that time:

void Pond::on_timer()
{

if (skater->mode < 9 && conductor->isconducting() &&

Iconductor->music_clip_is_playing()) {

skater->on_enter();
return;

}

SceneDirector::on_timer();
Lled

}

The isconducting function returns true if the game program was able to load

and initialize the music driver at the start of the program. The
music_clip_is_playing function returns true if a music clip is currently being
played.

Terminating the Music Driver
When the game is over, the Pond destructor deletes the MusicHand object,
which frees the memory where the object loaded the .XMI library:

CHAPTER 10: Example Game Programs 219

Pond: :~Pond()
{

delete conductor;
I CR.

}

You can instantiate and delete MusicHand objects during the course of thegame. Only one such object should be instantiated at any one time.

Marble Fighter
The Marble Fighter game pits two players in a kick-boxing match. Bothplayers can be humans, playing at different PCs, or one player can play againstthe computer. Marble Fighter is the first of our games that uses an intro
screen, a help screen, and a menu in addition to the action part of the game.

Intro and Help Screens
An intro screen is a static, full-screen image that the game displays when the
program starts. A help screen is a static, full-screen image that the gamedisplays when the player requests help, usually from the menu. Theatrix
games implement these screens by assigning them to directors.

Marble Fighter is written at the third level of abstraction, which meansthat it takes care of its own director navigation. It implements its help andintro screens by using identical constructs. We'll discuss the intro screenhere, and you can apply the same understanding to the help screen. This codeshows the game's Intro class, which implements an intro screen by derivingfrom VideoDirector:

class Intro : public VideoDirector {

public:
void display();
void take_over();
int get_director_id()

{ return INTRO_ID; }

int get_next_director id()
{ return MENU_ID; }

1;

220 C++ Games Programming

The game instantiates an object of type Intro and, by instantiating it as the

first director, arranges for that object to be the first director to get control.

When a director object gets control, Theatrix first calls the director's display

function followed by its take_over function; derived classes can override

these functions and often do. Here are the functions for the Intro class:

void Intro::display()
{

init_video();
show_pcx("intro.pcx");
swap_video_pages();

1

void Intro::take_over()
{

while (kbhit()) getch();
getch();

}

The Intro::display function calls VideoDirector functions to initialize the

video system and display the .PCX file that contains the intro pages image.

The Intro:takeover function does nothing more than wait for a keystroke,

at which time it returns to relinquish control. The class’s
get_next_director_id function tells Theatrix which director should be given

control next.
The Intro-take_over function flushes any pending keystrokes and then

waits for a keystroke, after which the function returns control to Theatrix.

Figure 10.6 shows Marble Fighter's intro screen.

CHAPTER 10: Example Game Programs 221

Figure 10.6 Marble Fighter's intro screen

Figure 10.7 shows Marble Fighter's help screen.

Kick INSERT
Punch SPACE
[13704 B

Move left LEFT ARROW
Move right RIGHT ARROW
Quit 318:

Figure 10.7 Marble Fighter's help screen

Later, at higher levels of abstraction, you will see how the SceneryDirectorclass encapsulates and hides the details of intro and help screens.

Menus
Most games have menus, but seldom does a game have a menu that lookslike the menus of other games. This is the way it should be. Marble Fighteruses a tombstone for a menu. Other games, discussed soon, use other kinds

222 C++ Games Programming

of menus. Theatris uses spinning cubes. Shootout uses a bullet as a menu

pointer. Skyscrap highlights the current menu selection.

Marble Fighter's menu is derived from VideoDirector so that page-flipping

can be used to change menu selections. A .PCX file of the tombstone is

displayed in the Menu::display routine. The menu has callbacks for the Up,

Down, and Enter keys. The Up and Down keys change the image being

displayed and make a sound. The Enter key stops the director, because when

Enter gets pressed a menu selection has been made, and the menu no longer

needs to be in control. The Menu class is shown here:

class Menu : public VideoDirector {

int cur;
Menultem* item[ITEMS+11;

protected:
DECLARE_CUELIST

public:
Menu();

~Menu();
const Type_info& get_next_director();
void initialize();
void display();
void on_up(int);
void on_down(int);
void on_enter(int);
void on_escape(int);
void on_fight(int);
void on_help(int);
void on_quit(int);

3

The Menu constructor assigns the item array with Menultem objects:

CHAPTER 10: Example Game Programs 223

Menu: :Menu() : VideoDirector()
{

item[1]=new Menultem(this, PLAY);
item[2]=new Menultem(this,HELP);
item[3]=new Menultem(this,QUIT);

}

Notice that the item array is declared with a size of ITEMS+1, because we arenot using the element item[0]. The Menu::display member function lookslike this:

void Menu: :display()
{

init_video();
show_pcx("menu. pcx");
if (cur!=pPLAY)

itemfcurl->display();
swap_video_pages();
synch_video_pages();

}

In addition to displaying the actual background, the menu displays a specificitem if the current item is not equal to the value PLAY, which can happenwhen selected parts of the game return to the menu process. The .PCX filehas been prepared with PLAY selected, so, if cur is equal to PLAY, then themenu is correct. Otherwise, the correct menu option is displayed on top ofthe background scene.
Most of the member functions in the Menu class are callbacks. Here is

on_up, the callback for the Up arrow keystroke:

224 C++ Games Programming

void Menu::on_up(int)
(

if (cur>PLAY)

cur= =;

else
cur=ITEMS;

item{cur]->display();
item[cur]l->play_switch_sound();

swap_video_pages();
}

The function decrements the cur integer, making sure that if cur is as high

as it can go, the lowest selection is chosen. The display call tells the new

current selection to display itself. Then a sound is played. In this menu,
each selection makes the same sound, but you could have each selection

make a different sound. The call to swap_video_pages updates the visible

page.
Most of the other callbacks in the Menu class look just like the on_up

callback. Notice that callbacks such as on_help are used when the user

presses a shortcut key. In the case of on_help, if the user presses the H key,

the menu jumps directly to the help option. Here is the on_help function:

void Menu::on_help(int)
{

if (cur!=HELP) {

cur=HELP;

item[cur]->display();
item[cur]->play_switch_sound();
swap_video_pages();

}

The callback forces the option to the HELP setting, unlessit is already there.

Now let's examine how the menu communicates with the rest of the

CHAPTER 10: Example Game Programs 225

program. First, if the user presses Enter, the current item is selected. The
on_enter callback function is shown next:

void Menu::on_enter(int)
{

stop_director();
}

Pressing the Enter key stops the Menu director object. Theatrix determines
what to do whenit calls the get_next_director member function, the returnvalue of which is based on which selection the user made before pressingEnter.

Whenever a director gives up control (when its stop_director memberiscalled), Theatrix determines which director to put in charge next. If nodirector can be found to take over, the application exits. Theatrix determines
which director is next by calling the current director's get_next_director
member. The Menu class's get_next_director function looks like this:

const Type_info& Menu::get_next_director()
{

if (cur==PLAY)

return typeid(Match);
if (cur==HELP)

return typeid(HelpPage);
return typeid(StopDirector);

}

The cur variable was set as the user made selections while viewing the menu
screen. If cur is equal to PLAY, the Match director is next, and its typeid is
returned. (In Marble Fighter, the game object is of type Match.) Likewise, if
HELP is the current option, then the HelpPage director takes over. If neither
is true (if QUIT was selected), then getnextdirector returns the typeid of
the StopDirector class to report to Theatrix that the current director is thelast one to run.

Figure 10.8 shows the Marble Fighter menu display.

226 C++ Games Programming

Figure 10.8 The Marble Fighter menu

The Fight
The action of the Marble Fighter game is controlled by the Match class,

which is derived from VideoDirector. The class instantiates two fighter

objects of classes derived from the base Fighter class and lets them fight.

Fighter is derived from Performer. In the single-player mode, one of the

fighters is the computer itself. The fighter objects can kick, punch, and block.

A fighter knows whenit has hit its opponent. The fighters use sound effects

for hits, groans, and shrieks. Each hit or kick is a score, and the first player to

reach the highest possible score is the winner. The game records the scoring

in video slider bars above the fighters. Figure 10.9 showsa fight in progress.

CHAPTER 10: Example Game Programs 227

Figure 10.9 A Marble fight

When you start the Marble Player game in single-player mode, you canchoose to be the left or right player by typing “-left” or “-right” on thecommand line.

Multiple-Player
Marble Fighter is the only game among the demos that supports multipleplayers on two PCs. To use this feature, you must connect the two PCs witha modem or a null modem cable and use the command-line options shown inTable 10.1.

Table 10.1 Marble Fighter command-line options
Option Meaning

-net specifies multiple players
-com <n> serial port: <n> = 1 (default) or 2
-left you will be the left player
-right you will be the right player

228 C++ Games Programming

Marble Fighter includes the code for making a direct serial connection.

Chapter 11 describes a tool that allows you to use modems at either end of

the connection.
To use the serial connection, a game calls the Theatrix::enable_netpacks

function to cause the serial connection to be acknowledged. Then,if the port

is to be other than COMI, the game calls the Theatrix::use_commport

function, passing the port numberas an argument. These calls must be made

before calling the Theatrix::go function to launch the game. After that, the

game can request cues from the remote computer and send cues to the

remote computer.
The Match class’s CUELIST table requests cues for the Match class object

when certain cues are received from the remote computer:

PE

——

CUELIST (Match)

[fos
NETPACK(IM_WAITING,on_waiting)

NETPACK(I_QUIT,on_quit)
ENDCUELIST

You can also use the Hand::request_netpack_cue and Hand::stop
_netpack_cue functions to request and terminate cues. Marble Fighter uses

that approach to get remote player cues for the remote fighter object.

Serial cues are eight-bit values. A game sends a cue to the remote

computer by calling the Hand::post_netpack function.

Town
Town is a Myst-like game. It consists of static full-screen displays, mouse

navigation, music clips, sound effects, and one video clip. You can use the

SceneryDirector class to build games with images that consist primarily of

static scenes. The Town demo game uses SceneryDirector objects to display

its scenery. Town is implemented at the fourth level of abstraction. There is

CHAPTER 10: Example Game Programs 229

No animation, so there are no Performer objects. The Town demois found onthe included CD-ROM in the \THX\DEMOS\TOWN subdirectory.

The Town Class
The Town game consists of 12 scenes, each rendered from a single 3-Dmodel. There is a Town class from which 12 subclasses are derived. Eachsubclass represents one scene in the game. The Town class is shown here:

class Town : public SceneryDirector {

static int townct;
int tune;
int clip;
virtual void look_forward() {

virtual void look_right() {

virtual void look_left() {

virtual void Took_back() {

void on_escape();
DECLARE_CUELIST

DECLARE_MOUSECURSORS

protected:
static MusicHand *conductor;
static VocalHand *soundtech;
Town(char *pcx, int tn = 0, int cl = 0);
~Town();
virtual void display();
virtual void hide();
void on_timer();

bs

}

}

}

}

The Town class includes data members that point to objects of MusicHandand VocalHand classes. These objects play the music and sound effects forthe game. The Town constructor builds them as shown here:

230 C++ Games Programming

Town: :Town(char *pcx, int tn, int cl) :

SceneryDirector(pcx, NoTransition)

if (townct == 0) {

conductor = new MusicHand("town.xmi");

soundtech = new VocalHand();
soundtech->load_sfx1ib("town.sfx");

}

tune = tn;
clip = cl;
townct+t;

}

The townct data member is a static reference-counting variable. It

ensures that the MusicHand and VocalHand objects are instantiated and

deleted only once. Because Town is a base class to 12 subclasses of which

there is one object each, this measure is necessary. The Town destructor

waits until townct is zero before deleting the two objects, as shown here:

Town: :~Town()
{

if (--townct == 0) {

delete soundtech;
delete conductor;

CUELIST and CURSORLIST Tables
The Town class's CUELIST table captures keystrokes and timer ticks as

shown here:

CHAPTER 10: Example Game Programs 231

CUELIST (Town)

KEYSTROKE(LF, Took_left)
KEYSTROKE(UP, 1look_forward)
KEYSTROKE(DN, Tlook_back)
KEYSTROKE(RT, Tlook_right)
KEYSTROKE(ESC, on_escape)
TIMER(18, on_timer)

ENDCUELIST

The Town class has a CURSORLIST table, which controls how the gamehandles mouse cursors. Here is the CURSORLIST table:

CURSORLIST(Town)

MOUSE_CURSOR(0, 0, 105, 239, LFCURSOR, Took_left)
MOUSE_CURSOR(106, 0, 211, 199, UPCURSOR, Took_forward)
MOUSE_CURSOR(106, 200, 211, 239, DNCURSOR, Took_back)
MOUSE_CURSOR(212, 0, 319, 239, RTCURSOR, Took_right)

ENDCURSORLIST

Each MOUSE_CURSOR entry in the CURSORLIST table specifies a regionon the screen with the X and Y coordinates of the region’s upper left and
lowerright corners. The MOUSE_CURSOR entries name cursor shapes forthe mouse to assume when its pointeris in the entry’s region. The entriesalso specify callback functions to call when the user clicks the mouse inthe regions.

The cursor shapes used by the Town game are the standard ones thatTheatrix provides. You can build custom cursor shapes. Chapter 4 discussesthat procedure.

Callback Functions
The callback functions in the CURSORLIST table are the same as thecallback functions associated with arrow keystrokes in the CUELIST table.This approach allows the user to play the game without a mouse by
pressing arrow keys.

232 C++ Games Programming

Playing Music and Sound Effects
The Town class overrides its base class's display function to turn on the

mouse and start any music clip or sound effect associated with the derived
Town subclass scene. The overridden hide function turns off the mouse,
music clips, and sound effects.

The Town:-on_timer callback function keeps a sound effect playing. If the

scene has a sound effect and if the sound effect has played to completion, the

function starts the sound effect playing again.

The three functions that manage music clips and sound effects are shown
here:

void Town::display()
{

SceneryDirector::display();
mouse_visible();
if (tune)

conductor->play_music_clip(tune);
if (clip)

soundtech->play_sound_clip(clip);
}

void Town::hide()
{

if (tune)
conductor->stop_music_clip();

if (clip)
soundtech->stop_sound_clip();

mouse_invisible();
SceneryDirector::hide();

}

void Town::on_timer()
{

if (clip && 1soundtech->sound_clip_is_playing())
soundtech->play_sound_clip(clip);

CHAPTER 10: Example Game Programs

Stopping the Game
The Town::on_escape callback function executes when the user presses the
Esc key:

void Town::on_escape()
{

set_next_director(&typeid(StopDirector));
stop_director();

}

The call to set_next_director tells the SceneryDirector class to shut down
when stop_director is called. Ordinarily, a SceneryDirector object always
switches to the next director in the list of instantiated directors when
stop_directoris called.

The Derived Town Subclasses
There are 12 derived Town subclasses, one for each scene in the game. Each
scene has a .PCX file associated with it, and some have music and sound
clips. Here is a typical Town subclass:

class Town3 : public Town {

public:
Town3() : Town("town03.pcx", 4, 2) { }

void look_left() { start_director(typeid(Town2)); }

void look_right() { start_director(typeid(Townl0)); }

bs

The Town constructor accepts as many as three arguments. The first
argument is the name of the .PCX file that provides the scene’s full-screen
image. The second argument is a musicclip, if one is to be played when the
scene begins. The third argumentis a sound clip, if oneis to be played when
the scene begins. These clip arguments are zero if no clip is to be played. The
Town constructor parameters have default arguments of zero, so you can
omit the argument values.

233

234 C++ Games Programming

Navigating the Town
The look_left and look_right callback functions override the empty callback
functions of the same name in the base Town class. There may also be
look forward and look_back callback functions. These functions specify
what to do when the user presses an arrow key or clicks in a mouse region to
move forward, backward, right, or left. In most cases, these functions call the
start_director function, specifying the typeid of the Town subclass to be
started. This action stops the current director and starts the specified
director.

Planning the scenes involved figuring out where the user’s viewpoint
would be for each one. Then, from each such viewpoint, we had to determine
which viewpoint would be activated depending on which way the user
navigated with the keyboard or the mouse.

To make this analysis easier, we built a map of the town by moving the
camera high in the sky and pointing it downward. Then we determined
where the game’s camera locations would be for each scene. Figure 10.10 is
that map with the camera information added.

Figure 10.10 A map of the Town

CHAPTER 10: Example Game Programs

Each of the camera legends in Figure 10.68 indicates the scene number when
the camera is pointed in the direction of one of the arrows. From these
legends we were able to determine where to place the camera to render each
scene from the 3-D model and which scene to change to when the user
moves away from the current scene in one of the four directions. Figure 10.11
is a montage of all 12 scenes from the Town game.

Figure 10.11 The Town scenes

Twelve scenes are not many for a complex game. Myst has more than 2500
scenes. This demo, however, shows you where to start when building games
like this.

Playing a Video Clip
The Town12 subclass does one thing that the others don’t do: It plays a
moving picture video clip during scene 12. The open door with a cat and a
piano in scene 12 of Figure 10.69 is actually one frame of a video clip. The
clip wags the cat’s tail, rolls the piano roll, and moves the piano keys up and
down. Here is the Town12 class declaration:

235

236 C++ Games Programming

class Townl2 : public Town {

public:
Town12() : Town("townll.pcx", 2) { }

void display()
{

Town: :display();
show_video("room.flc", 132, 53, TRUE);

}

void hide()
{

stop_video();
Town: :hide();

}

void Took_back() { start_director(typeid(Townll)); }

void iterate_director()
{

SceneryDirector::iterate_director();
if (conductor->isconducting() &&

Iconductor->music_clip_is_playing())
Took_back();

}

3

This class uses the same .PCX scenery file that Town11 uses. By projecting
the video clip over the part of the screen that shows the door of the house,
the scene seems to open the door and show the motion inside. The call to the
base Town class’s constructor specifies the scene and a music clip to play.
The overriding display function starts a video clip by calling the show_video
function. Its parameters are the name of the .FLC file, the X and Y
coordinates of the upper left corner where the video clip displays, and a true
or false indicator to specify that the clip is to repeat or to play only once.

The overridden iterate_director function is called for each loop that the
Director class processes to run the game. This function permits a game to
insert frequent tests and processes that are not related to ticks of the clock.
The Town12 class uses this iteration function to see whether the music clip

CHAPTER 10: Example Game Programs

has finished playing. If it has, the function calls the Town12::look_back
callback function to move to scene 11.

The TownApp Class
The TownApp class derives from Theatrix and contains pointers to all the
subclasses:

class TownApp : public Theatrix {

Townl *townl;
Town2 *town2;
Town3 *town3;
Town4 *town4;
Town5 *townb;
Town6 *town6;
Town7 *town7;
Town8 *town8;
Town9 *town9;
Townl0 *townlO;
Townll *townll;
Townl2 *townl2;

public:
TownApp();
~TownApp();

+s

The TownApp constructor builds instances of the scene objects using the
new operator. The destructor deletes these objects. The program’s main
function looks like the other main functions listed in this chapter.

Theatris
Theatris emulates a type of interactive board game that has gained popularity
in the past several years. The game uses a variable number of game pieces
that fall into a pit. The player fits these pieces together by rotating and

237

238 C++ Games Programming

moving them with the keyboard. The game employs a grid matrix to
implement the tiled pit into which the piecesfall.

We won't go into much detail about the game’s implementation. You can
read the code and see how most of it works. But several parts of Theatris are
worthy of study. The menu is unique, so we describe it here. The
implementation of the pit uses grid logic common to many games. The data
structures that implement the game pieces are interesting. These details
might not be obvious from reading the code, so we explain them here.

The Menu
The Theatris menu is different from other menus in that it indicates the
current selection with an animated rotating game piece. Figure 10.12 shows
the Theatris menu.

Figure 10.12 The Theatris menu

You can't tell by looking at Figure 10.12, but when you view the menu on the
screen, the game piece just to the left of the current selection rotates. As you
move the selection up and down with the arrow keys, the new selection’s
game piece starts rotating and the old one stops. The image frames of each
piece on the menu are stored in a .GFX file dedicated to the piece. The

CHAPTER 10: Example Game Programs 239

Menultem class manages the display of each game piece on the menu, and
the Menu class manages the entire menu.

The Menu constructor instantiates three Menultem objects and keeps
track of which one is currently selected by receiving keyboard cues for the up
and down arrow keys. The Menu object also gets a timer cue once every
timer tick. The Menu::on_timer function manages the rotation, as shown
here:

void Menu::on_timer()
{

item{cur]->update();
swap_video_pages();

}

The Menultem::update function, called by Menu::on_timer, computes the
next frame to be displayed and displays it. When the update function returns,
on_timer calls VideoDirector::swap_video_pages because update makes its
changes to the active page buffer and that buffer needs to become the visible
page buffer:

void Menultem::update()
{

image=(image+l)%numimages;
show_frame(x,y,image+l);

}

Each game piece on the menu is displayed from image frames taken from its
own .GFX file. The numimages data member is the number of imagesin that
file. The file contains exactly enough images to animate one complete
rotation of the piece. Therefore, the expression on the right side of the
assignmentin the above code always computes the next frame number in the
animation sequence.

The game pieces are similar to sprites in that they are animated. However,
unlike sprites, the pieces display themselves by using the VideoDirector::
show_frame function instead of the VideoDirector::show_image function.
VideoDirector::show_frame uses a graphics feature that superimposes a

240 C++ Games Programming

rectangular graphical image onto the background without considering
transparent parts of the rectangle. The game piece images were rendered
against the actual background so that their shadows would be projected onto
the background. Therefore, the animated images use all the pixels in the
frame rectangles.

The Pit
Figure 10.13 shows a Theatris game in progress. The game pieces fall into the
pit, and the player fits those pieces together by rotating and moving them
with the keyboard.

LB

LB
4 wiahwr

wow ow

»
Bah hdde Sd

*
EF
p

wr4baifww

bat

Lg

rE & 5\
LB 4

Figure 10.13 A Theatris game

The pit is implemented as a grid, represented by a logical two-dimensional
array of tile positions. Each position contains a pointer to an object of type
Block, a class that implements the game piece. When the pointeris null, the
grid position is not filled with a part of a game piece. The outer array is an
array of rows. Each row contains an inner array of tile positions and an
indicator that says whether the row is fully occupied. Shown next is the
organization of these arrays:

CHAPTER 10: Example Game Programs 241

struct row_array {

Block* col[PIT_WIDTH];
int is_full;

ts

struct pit_grid {

row_array row[PIT_DEPTH];
1;

Game Pieces
Theatris uses seven distinct game pieces. Each piece is made of four square
tiles. Figure 10.14 shows the seven pieces.

CR
re

Figure 10.14 The Theatris game pieces

The game pieces are implemented by arrays of coordinates in a five by five
grid of tiles. Coordinate 0/0 is the center tile. Tiles to the left of center are
addressed as ~1 and —2 on the X axis. Tiles to the right of center are addressed
as 1 and 2 on the X axis. Tiles above center are addressed as —1 and -2 on the
Y axis. Tiles below center are addressed as 1 and 2 on the Y axis.

IR
242 C++ Games Programming

Each game piece is represented in memory by four arrays of four
coordinates. Each array represents the piece at one of its four rotations. Each
of the four coordinates in an array specifies a tiled position. These data
structures are shown next:

struct point {

int Xo:
Yi

struct pointlist {

point pair[4];
ki

pointlist blueblockinfo[4] = { // [0] [11 [2] [3]
{{{-1,0}, {0,0}, (1,0},{-1,1},},}, // XXX XX X X

{{{-1,-1},{0,-11,{0,0},{0,1}, }.}, // X X XXX X

I1.)
{{{-1,0}, {0,0}, {1,0},(1,-1},}.,}, // X XX

({(0,-1}, {0,0}, {0,1},{1,1}, 1,1},

}s

Shootout
Shootoutis an arcade game that includes many of the features that Theatrix
supports. It is the most complex of the demo games, yet it has the simple,
hand-drawn appearance of many arcade-style games.

Shootout uses an intro screen to introduce the game and to explain the
underlying story. A menu guides users to the help screen, the options
screen, and the action. The program is written at the highest level of
abstraction, leaving most of the details to the hidden functions of the
SceneryDirector, SceneDirector, and Player classes. Figure 10.15 shows the
game as it plays out.

Shootout teaches several new lessons. First, the game demonstrates
Theatrix’s ability to support many sprites. Second, the sheriff's walk is

CHAPTER 10: Example Game Programs 243

animated using a smooth pace algorithm. Third, the other sprites use clipping
to appear in windows, from doorways, and from behind buildings.

Bullats [+] Dead Giteans (*) Dead Bd fuys[<)|

Figure 10.15 The Shootout game

Multiple Sprites
In addition to the seven players on the screen, each door on a building is a
Player object, as is each digit in the scoreboard. To support Shootout,
Theatrix must keep pace with 13 sprites all the time, maintaining a refresh
rate of 18 frames per second.

Smooth Animation
The sheriff's walking pace in Figure 10.15 must seem natural. When a footisfirmly planted on the street, the rest of the body should move forward
without having that foot slide in either direction. The Sheriff class
implements walking animation with a five-frame sequence that we described
in Chapter 4 under “Motion: One Frame at a Time.” The Sheriff::Walk
function implements that sequence:

244 C++ Games Programming

// --- step increments of the sheriff's stroll
short int Sheriff::walkincr[] = { 5,7,6,7 };

void Sheriff::Walk()
{

setinterval(walkinterval);
if (++steps == 40) {

steps = 0;
forward *= 1;
incr = 1;
of = 0;
frame = 0;

if (forward) {

offset = 0;
setx(FirstX);

}

else
offset = 5;

}

else {

if (forward)
setx(getx() + walkincr[of]);

else
setx(getx() - walkincr[of]);

if (++of == 4)
of = 0;

}

frame += incr;
if (frame == 5)

nee = =1
else if (frame == 1)

incr = 1;
set_imageno(frame+offset);

CHAPTER 10: Example Game Programs 245

The Sheriff::Walk function is executed once every other clock tick, or
approximately nine times per second. The five frame images are numbered 1

through 5 in the .GFX library associated with the Sheriff object. The steps
data member counts the steps. There are 40 steps across the screen, at which
time the sheriff changes direction. Each step changes the object’s X
coordinate and image.

Clipping
When the townspeople and the bad guys come into view, they appear in one
of the windows of a building, from out of a door, or from behind a building
and downthealley to the street. Their images must be clipped to within the
windows and doorframes and the edges of buildings. Except when they appear
in windows, the clipping stops after they are in full view.

The Shootout class clips the images of the BitPart objects when they are
about to enter the scene. Clipping is done bycalling the Player::clip function
with four coordinate points to define the rectangular screen region within
which the Player object can display. The BitPart class is derived from the
Player class, so this action clips the BitPart object to display within the
window, doorway, or alleyway. Each such entrance is described by a Portal
object that containsits coordinates.

When a BitPart object gets into full view, it unclips itself by calling the
Player::unclip function. When the object is about to exit the scene, it clips
itself to the portal through which it is going to exit.

SkyScrap
In SkyScrap, the player pilots a jet fighter across a scrolling landscape and
shoots at other craft that are shooting back. The game uses the joystick or the
keyboard to move the jet fighter around andto fire shots.

SkyScrap includes an intro page, a menu, and a help page. Figure 10.16
shows the action page with aircraft flying and rockets being launched.

246 C++ Games Programming

Figure 10.16 The SkyScrap game

The player of SkyScrap is piloting the white stealth aircraft. The ground
scrolls from top to bottom, and the other two craft come at the player from
the top of the screen. They keep coming. Even when you shoot them down,
more of them come at you. The round circles in the upper right corner of

Figure 10.16 are shots that the playerfired. In this screen shot, the player
fired and then moved abruptly to the left side of the screen.

Video Mode
SkyScrapis the only graphical game in our collection of demos that does not
use Mode X. Its video mode uses a VGA resolution of 320 x 200.

Joystick
The Stealth classis indirectly derived from the Performerclass, and it gets its
cues fromits initialize function:

CHAPTER 10: Example Game Programs 247

void Stealth::initialize()
{

Toad_gfx1ib("ss.gfx");
Toad_sfx1ib("ss.sfx");
request_hotkey_cue(SCAN_LEFT, (callback)&Stealth::OnLeftKey);
request_hotkey_cue(SCAN_RIGHT, (callback)&Stealth::0nRightKey);
request_hotkey_cue(SCAN_UP, (callback)&Stealth::0nUpKey);

request_hotkey_cue(SCAN_DOWN, (callback)&Stealth::0nDownKey);
request_hotkey_cue(SCAN_SPACE, (callback)&Stealth::0nFireKey);
request_joystickbutton_cue(BUTTONONE,

(callback)&Stealth::0nFireKey);
request_joystickmove_cue((callback)&Stealth::0nMove);

}

The OnLeftKey, OnRightKey, OnUpKey, and OnDownKey callback
functions each move the sprite one increment around the screen when the
player presses the corresponding key. The OnFireKey callback function fires
a shot from the player's craft. The increment of movement is controlled by a
data member named MoveLength, which is initially set to the value 4. This
value is the number of pixel positions to move the aircraft for each call of one
of the movement callback functions.

We added joystick control to this game by using the joystick’s button 1 to
fire shots and by writing the OnMove callback function to be executed when
the player moves the joystick away from the center position. Here is the
OnMove function:

void Stealth::0OnMove(int x,int y)
{

Movelength = max(abs(x) / 16, 4);
X > 0 ? OnRightKey() : OnLeftKey();
Movelength = max(abs(y) / 16, 4):

y > 0 7 OnUpKey() : OnDownKey();

Movelength = 4;

248 C++ Games Programming

Joystick movement events are called when the joystick is moved away from
the center position. The X and Y values that are sent as arguments specify
the distance in positive (right and up) and negative (left and down) values

away from center. The OnMove function uses those values to compute the
number of pixel positions to move the craft. The further the user moves the
joystick from center, the greater the number of pixel positions in the move
and, therefore, the faster the craft changes position.

Background Scrolling
As the game progresses, the background scenery, which is a rendered view of

the terrain, scrolls vertically beneath the sprites. The program uses a general-

purpose background scroller class. The terrain is represented by, in this case,
14 .PCX images, which, if properly placed in a column, would display the
complete territory to be covered. Scrolling is achieved first by computing
which of these images contribute to the current terrain representation and
then by displaying portions of the imagesin clipped configurations.

The 14 images wrap around so that when the scroller gets to the end of the
terrain, it wraps to the beginning.

The scroller class is designed to support scrolling in all directions. To use
this feature, you must provide the .PCX files to represent the terrain in a grid.
We have not yet used it that way and cannot say for sure that it works except
in theory. You can study the SkyScrap game to see how it uses the scroller
class and then experiment with it to see how far it takes you.

The Theatrix Toolset

“The game is done! I've won, I've won!”
Samuel Taylor Coleridge

This brief chapter lists the tools and libraries that we collected from
shareware and freeware sources. With one exception, they are all included on
the CD-ROM that accompanies this book. You will learn what the following
tools are and how you can register or license their use.

o

©

©
0
©
9

NeoPaint
MORAY

POV-Ray
Alchemy
Povnet
Blaster Master

© Dave's TGA Animator
© MT—Multi-Track Sequencer/Editor
© MODEM.BAT
© Fastgraph 4.0
© DIGPAK and MIDPAK

249

250 C++ Games Programming

About Shareware
Shareware is a technique for marketing software. Several of the tools
discussed here and many of the extra games on the included CD-ROM are
shareware. We're sure you've heard this before, but please listen up. When a

product comes your way through shareware channels, whether on a CD-
ROM, from a download, or from a diskette rack, that product is not yours to
keep and use forever. You may try it out, but if you plan to use it beyond a
trial period, you are required to license or register it and pay whatever fee the
author requests. These fees are nominal considering the value received.

Documentation and Support
The tools include documentation in the form of text files that accompany the
software. When you license or register the products, you usually get printed
documentation, the most current releases of the products, and the right to
ask questions of the authors. You can also get help on the various game and
graphics forums of the many on-line services that programmers use.

Tools
Following is a short description of each of the tools that you can use to build
graphics, sound effects, and video clips. Each listing includes, where
appropriate, addresses, phone numbers, and registration costs.

CHAPTER 11: The Theatrix Toolset 251

NeoPaint
Neosoft Corp.

354 NE Greenwood Avenue, Suite 108

Bend, OR 97701-4631

503-383-7195 (BBS)

503-389-5489 (VOICE)

503-388-8221 (FAX)

$45

It isn’t often that you find a piece of software that looks good, is easy to use,
is reliable, and surprises you more each time you use it, but NeoPaintis such

a program. NeoPaint supports .BMP, .PCX, and TIFF file formats. Thisis the
best DOS paint program we've seen, and that is saying a lot. The unregistered
version is included on the CD-ROM in the \neopaint directory.

MORAY
Lutz Kretzschner

SoftTronics

Munich, Germany

100023,2006 (CompuServe)

$59

MORAY is a 3-D modeler designed for use with POV-Ray (Persistance of

Vision ray-tracer). It is a DOS application that employs common 3-D modeler
and CAD screen configurations with three side views and an isometric view of

the model. You build models by visually and logically combining standard
shapes with one another and with textures and surfaces. Those models can be

compiled into POV-Ray source code, which can then be rendered by POV-Ray.

The shareware version of MORAY is included on the CD-ROM in the
\moray32 directory. The shareware version has all the functionality of the
registered version and employs nag screen techniques to encourage
registration. MORAY is an impressive application and makes using POV-Ray
much easier. The version includedis the 32-bit version, so memory does not
run out quite as quickly as it did in the older 16-bit versions.

meal

252 C++ Games Programming

POV-Ray
Chris Young

76702,1655 (CompuServe)

POV-Ray (Persistance of Vision ray-tracer) is a great, powerful, and free piece
of software. Written by the POV team, which is chaired by Chris Young,
POV-Rayis a ray-tracer that uses C-like source language to describe 3-D
models, which the program renders into dazzling imagefiles.

We would have included a copy of POV-Ray on the CD-ROM, but an
exclusive agreement that the authors have made with another publisher
prohibits us from doing so. Fear not, however, because POV-Ray is still free,
and it’s available from CompuServe’s GRAPHDEV forum.

Several of the demo games use images rendered with POV-Ray. We have
included the POV-Ray sourcefiles that describe these images and the image
files themselves. You do not need POV-Ray to build any of our images, but
you would need it or another ray-tracer to build your own photo-realistic
scenes.

Alchemy
Handmade Software, Inc.

48820 Kato Road, Suite 110

Fremont, CA 94538

800-358-3588 (VOICE)

hsi@netcom.com (Internet)
71330,3136 (CompuServe)
510-252-0909 (FAX)

$79 (MS-DOS version)

Image Alchemy is an impressive and reliable bitmapped graphicalfile format
converter. The demo version converts images that are 640 by 480 pixels and
smaller. Image Alchemy supports virtually every graphical file format. Image
Alchemy resides on the CD-ROM in the \alchemy directory. The
documentation is in a file called alchemy.doc.

CHAPTER 11: The Theatrix Toolset 253

Povnet
If you have access to two or more computers, Povnet can prove useful.
Povnet allows you to use one of the computers as a server to render POV-Ray
images. Using a network, POV-Ray source files can be copied to the serverwhere they will be rendered automatically. While the image is rendering atthe remote computer, you are free to edit the data file or start on another
scene at your local computer. Povnet’s executables and source code files
reside on the CD-ROM in the \povnet directory.

Povnet was built by the authors of this book, and you may use and
distribute it freely. It works better if you make some modifications to POV-
Ray. The modified source code files and Povnet are posted on CompuServe
under the GRAPHDEV forum. We have not included the modified POV-Ray
sources on the accompanying CD-ROM for the same reason that we are not
distributing POV-Ray.

Blaster Master
Gary Maddox

210 Camelot Drive

Weatherford, TX 76086

76711,547 (CompuServe)
GO SWREG for registering via CompuServe
$29.95 standard, $49.95 deluxe

Blaster Master is a complete DOS system for recording, editing, and playing
sound files on a Creative Labs Sound Blaster. The program is useful for fine-
tuning your sound effects and converting between sound file formats, and it
has an impressive set of features. It is on the CD-ROM in the \bmaster
directory.

254 C++ Games Programming

Dave’s .TGA Animator
David K. Mason

PO. Box 181015

Boston, MA 02118

76546,1321 (CompuServe)

$35

Dave’s .TGA Animator, or DTA,is a utility designed to generate video .FLI or
FLC files from sets of graphical images. This tool allows you to create video

files from sets of .PCX or .TGA frame images. The set is processed by DTA

into an .FLC file, which can be shown by video player software or used in a

game. DTA is on the CD-ROM in the Jdirectory.

The DTA program comes with documentation, but the best reference
work to it is found in the book Morphing on Your PC, written by DTA’s
author, David Mason. See the Bibliography for details.

MT—Multi-Track Sequencer/Editor
In 1989, M&T books published MIDI Sequencing in C, by Jim Conger. The
MT software was included with the book. MT is a multitrack sequencer
program that runs under DOS and interfaces with MPU-401 MIDI devices.
You can use the program along with a compatible MIDI interface card and a
MIDI keyboard to record MIDI songs such as the ones that accompany our
demo games.

When the book went out of print, Conger released MT as unsupported
freeware. The software, including the source code, is the the \MT directory of
the CD-ROM.

MODEM.BAT
This batch file allows you to use a modem to connect PCs that are running a

game written to use the Theatrix serial port connection for multiplayer

CHAPTER 11: The Theatrix Toolset 255

sessions. The batchfile is located in the \modem directory of the CD-ROM.
For instructions on its use, run the batch file with no command-line
arguments. This file was prepared by the authors of this book, and you may
use it freely.

Libraries
Following is a short description of the two libraries used by Theatrix.

Fastgraph 4.0
Ted Gruber Software
PO. Box 13408

Las Vegas, NV 89112

702-735-1980 (VOICE)

702-735-4603 (FAX)

702-796-7134 (BBS)

72000,1642 (CompuServe)

Fastgraph Lite is a sharewarelibrary of fast graphics functions. Fastgraph is
designed specifically as a game libary and was used to write Theatrix.
Fastgraph Lite is the shareware version, which supports all the functions of
the registered version; it requires a TSR to be resident in memory. You are
permitted to use the shareware version of Fastgraph Lite for your own
development, but if you want to distribute programs that use the Fastgraph
library functions, you must purchase and link with the commercial version
of the library. You can get a commercial version of Fastgraph Lite that you
can use to distribute programs. As with the shareware version, you must
load a TSR before running a program that uses the library. The commercial
version of Fastgraph Lite costs $49. For $249, you can also get a full library
that you can link with and that needs no TSR to run a program.

The shareware version of Fastgraph Lite version 4.0 is located in the \fgl
directory of the CD-ROM.

256 C++ Games Programming

DIGPAK and MIDPAK

John W. Ratcliff

747 Napa Lane

St. Charles, MO 63304

70253,3237 (CompuServe)

J.RATCLIFF3 (genie)

314-939-0200 (BBS)

$500

DIGPAK and MIDPAK are creations of The Audio Solution, Inc. They
provide sound and MIDI support for a large number of sound cards. Both

programs can be found in the \DIGMID directory of the CD-ROM. A $500
license fee applies for each driver if you are going to distribute the drivers

with your commercial programs. Shareware authors should contact the
vendor to discuss terms for distributing shareware copies in advance of

receiving any registrations.

The CD-ROM

The software on the CD-ROM that accompanies this book falls into the
following categories.

& Theatrix C++ library
© Demo game programs
& Theatrix utilities
© Additional utilities
© Games

This appendix describes where the software is located on the CD-ROM and
how to install it onto your hard drive.

257

258 C++ Games Programming

CD-ROM Organization
Figure A.1 shows the layout of the CD-ROM.

—thx
—include
—lib
—bin :

Boal Theatrix w/demos
—source

—theatrix
—utils

—theatns
—skater
—skysurap
—planet Demos
—town
—mhighter
—shootout

—digmid
—neopaint
—alchemy
—mt Tosa—fgl Utilities
—moray32
—bmaster
—povnet
—modem
—dta

—extras
—astrot
—f
Boba Games
—advent
—relent

Figure A.1 CD-ROM directory structure

Theatrix Source Code
The Theatrix library source code is kept in two separate directories. The
headerfiles are in the \thx\include directory, and the source files are in the
\thx\source\theatrix directory.

Appendix A: The CD-ROM

Theatrix Examples
The Theatrix examples are contained in directory structures designed to be
conducive to a development environment. Table A.1 shows the location of
these directories on the CD-ROM.

Table A.1 Demo programs on the CD-ROM

\thx\demos\ mfighter Marble Fighter game
\thx\demos\ shootout Shootout game
\thx\demos\theatris Theatris game
\thx\demos\skyscrap SkyScrap game
\thx\demos\town Town demo
\thx\demos\mouse Mouse demo
\thx\demos\ ttt Tic-Tac-Toe demo
\thx\demos\ planet Planet demo
\thx\demos\ skeleton Stripped-down demo
\thx\demos\textmode Text-mode example
\thx\demos\skater Skater animation demo

As discussed in Chapter 9, each of these directories contains a build and an
exec subdirectory. The build subdirectory contains all the source code for the
game. The exec directory is where the executable and data files are placed by
the makefile.

Theatrix Utilities
The source code for the Theatrix utilities is located in the \thx\source\utils
directory. The executables are in \thx\bin.

Installing Theatrix
The easiest way to install the Theatrix software is to copy it onto your hard
drive as a complete directory structure. You can do this with the DOS xcopy
command:

259

260 C++ Games Programming

1. Make a directory on your hard drive called \thx.
2. Log into that directory.
3. Copy the directory from the CD-ROM with this command:

xcopy /s d:\thx (if your CD-ROM is the D drive).

Next, install the following software packages from the CD-ROM:

1. Fastgraph
2. DIGPAC and MIDPAC
3. Image Alchemy
4. Dave's .TGA Animation Program
5. POV-Ray!

The installation procedures for each of these packages are discussed later in
this chapter.

Next, edit the make.cfg file in the \thx\source directory. The needed
changes are discussed in Chapter 9 and in commentsin the make.cfg file.

The final step is to ensure that the utilities are in the path. The following
items must be in the path in order for you to compile the demos from
scratch:

Your compiler
The Theatrix utilities (\thx\bin)
Image Alchemy
Dave’s .TGA Animation Program
POV-Ray

oo

0

Be

Once this installation is completed, you are ready to compile. Each demo has
a makefile in its build directory, and Theatrix itself can be compiled with the
makefile in \thx\source\theatrix.

1 POV-Ray is not included on the CD-ROM. POV-Ray is necessary only for compilation of the
demos if the .POV files are replaced or modified. If only C++ source code is modified, then it will
not be necessary to invoke POV-Ray.

Appendix A: The CD-ROM 261

Other Utilities and Libraries
Blaster Master
Blaster Master is located in the \bmaster directory on the CD-ROM. To
install the program, copy the contents of the CD-ROM \bmaster directory to
a directory on your hard drive. The tutor.doc file explains the program’s
interface.

Dave’s .TGA Animation Program
Dave’s TGA Animation Program (DTA) version 2.2 is located in the \DTA
directory. To install the program, copy the contents of the CD-ROM \DTA
directory into a directory on your hard drive. The file dta.doc will get you
started, but Morphing on Your PC, written by David Mason (author of DTA),
is a better source of documentation.

DIGPAC and MIDPAC
Both DIGPAC and MIDPAC are in the \DIGMID directory of the CD-ROM.
To install, copy the files into a directory on your hard drive. Two files—
digpkapi.doc and midpkapi.doc—supply documentation for using the APIs of
the loadable driver modules. Unless you plan to use either package without
Theatrix, you won't need to read these files.

Fastgraph
The version of Fastgraph Light supplied on the CD-ROM is 4.0, and it is
located in the \gl directory. Fastgraph is installed via the install program
supplied by Ted Gruber Software.

1. Change into the \fgl\fglight directory of the CD-ROM.
2. Typeinstall.
3. Follow the instructions.2

2The Fastgraph install program assumes that you will be installing the Fastgraph include file and
the .LIB file into your compiler directory. This is not a good idea, because upgrading or
reinstalling your compiler may erase or corrupt these files. We recommend that you install all
the Fastgraph files into their own directory.

262 C++ Games Programming

Once the installation is complete, you will find ample documentation in the
DOC files. If you are installing Fastgraph only for use with Theatrix, you
won't need to view these files.

Image Alchemy
Image Alchemy is located in the \alchemy directory. To install it, copy the
contents of the directory to your hard drive. A sizable documentation file is
available by executing the self-extracting archive manual.exe. The program
also has good command-line help.

Modem
The modem batch file is located in the \modem directory. Copy it to your
hard drive where it will be in the path. For instructions on its use, run the
batch file with no parameters.

MORAY
MORAYresides in the \moray32 directory. To install, copy the files to your
hard drive. There are some example models in the mdl directory, so you
many want to use the xcopy /s command.

MT

You'll find the Midi Sequencing software (and source code) in the \MT
directory. Copy the files to your hard drive to install. You will need to run
setup.exe before using the program.

NeoPaint
NeoPaint version 3.1 is located in the \neopaint directory. You can copy the
contents of the directory to a directory on your hard drive, or you can use the
supplied install program. The latter method configures yourprinter, so if you
intend to print from NeoPaint, you will need to run the install utility. The
utility is in \neopaint\install and is named install.exe.

Appendix A: The CD-ROM 263

Povnet
The \povnet directory contains the Povnet utility. To install, copy the
contents of the directory to a directory on your hard drive. The filepovnet.doc explains how to set up a dedicated rendering system using
Povnet.

Games
The shareware and freeware games on the CD-ROM are all uncompressed.
Many can be run directly from the CD-ROM, butit is better to copy them to
your hard drive: CD-ROM drives are slow in comparison to hard drives, and
some of the games write to configuration files on the disk from which they
are run.

Please bear in mind that most of these games are shareware, which meansthat there is a development group somewhere trying to make a living by
letting you try the software before you buy it.

Adventure
The classic Adventure game is on the CD-ROM in the \extras\advent
subdirectory. Copy the contents of the \extras\advent directory to a
subdirectory on your hard drive to install.

Astrofire
Astrofire is a great example of the use of ray-tracing to spruce up a classic
game. Modeled after the old Asteroids game, Astrofire offers many levels of
flying rocks and aggressive enemies. To install, copy the contents of the
\extras\astrof directory to an empty directory on your hard drive.

Frac
Frac is hardly new; it has been around for years. This is version 2.0, but only
the menus have changed. Fracis a classic 3-D version of Tetris. Copy the files
from the \extras\frac directory to install.

264 C++ Games Programming

Life

Conway's classic game of Life is on the CD-ROM in the \extras\life
subdirectory. To install, copy the contents of the \extras\life directory to a

subdirectory on your hard drive.

Relentless
This is a freeware demo version of Relentless. Relentless uses polygon
graphics to achieve incredible animated scenes. You must maneuver past
guards—either discreetly or forcefully—to escape to freedom. Copy the
\extras\relent directory, and run setup.exe to configure.

Theatrix C++
Header Files

ascii.h
/] =---e--- ascii.h
#ifndef ASCII H
ftdefine ASCII H

[mmm keypad keys
const int END = 0x4f00;
const int LF = 0x4b00;
const int LEFTARROW = 0x4b00;
const int HOME = 0x4700;
const int UP = 0x4800;
const int UPARROW = 0x4800;
const int PGUP = 0x4900;
const int RT = 0x4d00;
const int RIGHTARROW = 0x4d00;
const int PGDN = 0x5100;
const int DN = 0x5000;

265

266 C++ Games Programming

const int DOWNARROW = 0x5000;

const int INS = 0x5200;

const int DEL = 0x5300;

const int ESC = 0x001b;

const int ESCAPE = 0x001b;

const int ENTER = 0x000D;

const int SPACE = 0x0020;

const int SPACEBAR = 0x0020;

[l=sss mm wes dismdghag function keys

const int F1 = 0x3b00;

const int F2 = 0x3c00;

const int F3 = 0x3d00;

const int F4 = 0x3e00;

const int F5 = 0x3f00;
const int F6 = 0x4000;

const int F7 = 0x4100;

const int F8 = 0x4200;

const int F9 = 0x4300;

const int F10 = 0x4400;

fendi f

APPENDIX B: Theatrix C++ HeaderFiles 267

debug.h
bl mre mmns debug.h

{ifndef DEBUG_H

ftdefine DEBUG_H

void fatal(const char *,const char *,int);

ffundef Assert
fHifdef NDEBUG

fidefine Assert(p) ((void)0)
felse
{define Assert(p) ((p) ? (void)0 : \

fatal (#p, FILE,LINE.)
frendif

fendi f

268 C++ Games Programming

director.h
PI mie im SEB director.h

fkifndef DIRECTOR_H

fidefine DIRECTOR_H

fHinclude <typeinfo.h>
finclude "keyfold.h"
#include "kdfold.h"
finclude "timefold.h"
ftinclude "msgfold.h"
finclude "mcfold.h"
finclude "mmfold.h"
finclude "jsfold.h"
frinclude "netfold.h"
ffinclude "hand.h"

// --- director navigation classes (cannot be instantiated)
class NextDirector { NextDirector() { } }

class PrevDirector { PrevDirector() { } };
class FirstDirector { FirstDirector() { } };

{1}
{4

.’

.
’class LastDirector { LastDirector()

class StopDirector { StopDirector()

class Director : public Hand {

void set_keydownmode(int md);
void add_keystroke_cue(Hand*,callback,int);
void del_keystroke_cue(Hand*,callback,int);

void add_keydown_cue(Hand*,callback,int);
void del_keydown_cue(Hand*,callback,int);

void add_timer_cue(Hand*,callback,int);
void del_timer_cue(Hand*,callback,int);

void
void
void
void

void
void

void
void

void
void

void
void

void

APPENDIX B: Theatrix C++ Header Files 269

add_message_cue(Hand*,callback,int);
del_message_cue(Hand*,callback,int);
delete_hand(Hand*);
submit_message(int,int,int);

add_mouseclick_cue(Hand*,callback,int);
del_mouseclick_cue(Hand*,callback,int);

add_mousemove_cue(Hand*,callback);
del_mousemove_cue(Hand*,callback);

add_joystickbutton_cue(Hand*,callback,int);
del_joystickbutton_cue(Hand*,callback,int);

add_joystickmove_cue(Hand*, callback);
del_joystickmove_cue(Hand*,callback);

add_netpack_cue(Hand*,callback,int);
void del_netpack_cue(Hand*,callback,int);
void post_netpacket(p);

KeystrokeFolder keyinfo; // director's key subscriptions
HotkeyFolder kdowninfo; // "hotkey" subscriptions
TimerFolder timeinfo; // timer subscriptions
MessageFolder msginfo; // message subscriptions
MouseclickFolder mouseclickinfo;
MousemoveFolder mousemoveinfo;

JoystickFolder joystickinfo;
NetpackFolder netpackinfo;

int downmode; // flag for keyboard mode

int done; // true while director in control
const Type_info *next_director;
friend class Hand;

270 C++ Games Programming

pr

1

fe

friend class Theatrix;
otected:
Director();
virtual ~Director() {i}
virtual void take_over();
virtual void display() {

virtual void hide() {

virtual void iterate_director() { }

virtual const Type_info& get_next_director()
{

if (next_director)
return *next_director;

return typeid(StopDirector);
}

void set_next_director(const Type_info *dir)
{ next_director = dir; }

int next_director_set()
{ return next_director != 0; }

void quit()
{ done=1; }

}

}

ndif

APPENDIX B: Theatrix C++ Header Files 271

folder.h
Lf ~----- folder.h

ifndef FOLDER_H

fdefine FOLDER_H

#include "handler.h"

class Hand;

class Folder {

EventHandler *events;
int eventct;
virtual void reset() = 0;

protected:
Folder(EventHandler* en=0, const int n=0)

{ events = en; eventct =n; }

virtual ~Folder()
{1}

public:
virtual void delHand(Hand*);
virtual void dispatch(int = 0, int = 0, int = 0) = 0;

bs

ffendif

272 C++ Games Programming

hand.h
JAaid hand.h

fi fndef HAND_H

fidefine HAND_H

#include <typeinfo.h>
f#finclude <fastgraf.h>
f#include "debug.h"
#include "settings.h"

class Hand;

typedef void(Hand::*callback)(int,int,int);

enum EventCode {

TERMINAL_EVENT,

HOTKEY_EVENT,

TIMER_EVENT,

MESSAGE_EVENT,

KEYSTROKE_EVENT,

MOUSECLICK_EVENT,

MOUSEMOVE_EVENT,

JOYSTICKBUTTON_EVENT,

JOYSTICKMOVE_EVENT,

NETPACK_EVENT

13

struct Event {

EventCode evtype;
int code;
callback func;

+s

APPENDIX B: Theatrix C++ Header Files 273

fidefine DECLARE_CUELIST \
static Event MessageEntries[]; \
virtual Event *GetMessageMap() \

{ return MessageEntries; }

#define CUELIST(hand) \
Event hand::MessageEntries[] = {

fidefine HOTKEY(k,fn) \
{ HOTKEY_EVENT, k, (callback)fn 1},

fidefine TIMER(t,fn) \
{ TIMER_EVENT, t, (callback)fn },

fidefine MESSAGE(m,fn) \
{ MESSAGE_EVENT, m, (callback)fn },

fidefine KEYSTROKE(k,fn) \
{ KEYSTROKE_EVENT, k, (callback)fn 1},

fidefine MOUSECLICK(b,fn) \
{ MOUSECLICK_EVENT, b, (callback)fn },

fidefine MOUSEMOVE(fn) \
{ MOUSEMOVE_EVENT, 0, (callback)fn },
fidefine JOYSTICKMOVE(fn) \

{ JOYSTICKMOVE_EVENT, 0, (callback)fn },
fidefine JOYSTICKBUTTON(b,fn) \

{ JOYSTICKBUTTON_EVENT, b, (callback)fn },
fidefine NETPACK(p,fn) \

{ NETPACK_EVENT, p, (callback)fn },

#define ENDCUELIST \
{ TERMINAL_EVENT, 0, 0 } \

1s

class Director;

class Hand {

Director* director;

274 C++ Games Programming

static int numhands;

static Hand *hand[MAXHANDS];

static void initialize_hands();
virtual void request_cues() { }

void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void

thx_request_keystroke_cue(int key,callback);
thx_stop_keystroke_cue(int key,callback);
thx_request_hotkey_cue(int scancode, callback);
thx_stop_hotkey_cue(int scancode,callback);
thx_request_timer_cue(int rate,callback);
thx_stop_timer_cue(int rate,callback);
thx_request_message_cue(int msg,callback);
thx_stop_message_cue(int msg,callback);
thx_post_message(int msg,int datal, int data);

thx_request_mouseclick_cue(int msg,callback);
thx_stop_mouseclick_cue(int msg,callback);
thx_request_joystickbutton_cue(int msg,callback);
thx_stop_joystickbutton_cue(int msg, callback);
thx_request_mousemove_cue(callback);
thx_stop_mousemove_cue(callback);
thx_request_joystickmove_cue(callback);
thx_stop_joystickmove_cue(callback);
thx_request_netpack_cue(int,callback);
thx_stop_netpack_cue(int,callback);
thx_post_netpack(int);

virtual Event *GetMessageMap() { return 0; 1}

friend class Director;
friend class Theatrix;

protected:
static short int mouseinuse;
Hand(Director* dir=0);
virtual ~Hand();
virtual void initialize() {}

APPENDIX B: Theatrix C++ HeaderFiles 275

virtual void stop_director();
virtual void start_director(const Type_info&);
Director* my_director() { return director; }

void set_hotkeys(int on);
void request_keystroke_cue(int key,callback);
void stop_keystroke_cue(int key,callback);
void request_hotkey_cue(int scancode,callback);
void stop_hotkey_cue(int scancode,callback);
void request_timer_cue(int rate,callback);
void stop_timer_cue(int rate,callback);
void request_message_cue(int msg,callback);
void stop_message_cue(int msg, callback);
void post_message(int msg,int datal, int data2);
void request_mouseclick_cue(int b,callback);
void stop_mouseclick_cue(int b,callback);
void request_mousemove_cue(callback);
void stop_mousemove_cue(callback);
void request_joystickbutton_cue(int b,callback);
void stop_joystickbutton_cue(int b,callback);
void request_joystickmove_cue(callback);
void stop_joystickmove_cue(callback);
void request_netpack_cue(int,callback);
void stop_netpack_cue(int,callback);
void post_netpack(int);
void init_mouse()

{ fg_mouseini(); }

void mouse_visible()
{ fg_mousevis(l); mouseinuse = 1; }

void mouse_invisible()
{ fg_mousevis(0); mouseinuse = 0; }

void mouse_cursorshape(char *bitmap)
{ fg_mouse256(bitmap+2, *bitmap, *(bitmap+l)); }

void get_mouseposition(int *x, int *y, int *b)
{ fg_mousepos(x, y, b); }

void get_mouseposition(int *x, int *y)

276 C++ Games Programming

{ int b; fg_mousepos(x, y, &b); }

void set_mouseposition(int x, int y)
{ fg_mousemov(x, y); }

public:
void set_director(Director* d) { director=d; }

1;
lf mires opis aston Keystroke
inline void Hand::request_keystroke_cue(int key,callback cb)
{

Assert(director != 0);
thx_request_keystroke_cue(key,cb);

}

inline void Hand::stop_keystroke_cue(int key,callback cb)
{

Assert(director != 0);
thx_stop_keystroke_cue(key,cb);

}

(if =5= es Srsiameanbalisy Keydown

inline void Hand::request_hotkey_cue(int key,callback cb)
{

Assert(director I= 0);
thx_request_hotkey_cue(key, cb);

}

inline void Hand::stop_hotkey_cue(int key,callback cb)
{

Assert(director != 0);
thx_stop_hotkey_cue(key, cb);

}

fof erin me bp En Timer

inline void Hand: :request_timer_cue(int r,callback cb)
{

Assert(director != 0);
thx_request_timer_cue(r, cb);

}

inline void Hand::stop_timer_cue(int r,callback cb)

APPENDIX B: Theatrix C++ Header Files 277

{

Assert(director != 0);
thx_stop_timer_cue(r, cb);

}

Sf += mms ol Reb Message
inline void Hand::request_message_cue(int msg,callback cb)
{

Assert (director != 0);
thx_request_message_cue(msg, cb);

}

inline void Hand::stop_message_cue(int msg,callback cb)
{

Assert(director != 0);
thx_stop_message_cue(msg, cb);

}

inline void Hand::post_message(int msg,int datal=0,int data?2=0)
{

Assert(director != 0);
thx_post_message(msg, datal, data2);

}

[] —=tmsins poem vs am mt mouseclick
inline void Hand::request_mouseclick_cue(int b,callback cb)
{

Assert (director != 0);
thx_request_mouseclick_cue(b,cb);

}

inline void Hand::stop_mouseclick_cue(int b,callback cb)
{

Assert (director != 0);
thx_stop_mouseclick_cue(b,cb);

}

[if =semtie mm mp mip ig sie mousemove
inline void Hand::request_mousemove_cue(callback cb)
{

278 C++ Games Programming

Assert(director != 0);
thx_request_mousemove_cue(ch);

}

inline void Hand::stop_mousemove_cue(callback cb)

{

Assert(director != 0);
thx_stop_mousemove_cue(ch);

}

lds sm we ~mpne on joystickbutton
inline void Hand::request_joystickbutton_cue(int b,callback cb)

{

Assert(director I= 0);
thx_request_joystickbutton_cue(b,cb);

}

inline void Hand::stop_joystickbutton_cue(int b,callback cb)

{

Assert(director != 0);
thx_stop_joystickbutton_cue(b,cb);

}

Fla ie miniom sminivs mame joystickmove
inline void Hand::request_joystickmove_cue(callback cb)
{

Assert(director != 0);
thx_request_joystickmove_cue(cb);

}

inline void Hand::stop_joystickmove_cue(callback cb)
{

Assert(director I= 0);
thx_stop_joystickmove_cue(ch);

}

[i] Hemosns ss Supe Sums netpack
inline void Hand::request_netpack_cue(int p,callback cb)
{

Assert(director != 0);
thx_request_netpack_cue(p,cb);

APPENDIX B: Theatrix C++ HeaderFiles 279

}

inline void Hand::stop_netpack_cue(int p.callback cb)
{

Assert(director != 0);
thx_stop_netpack_cue(p,ch);

}

inline void Hand::post_netpack(int p)
{

Assert (director != 0);
thx_post_netpack(p);

}

fendi f

280 C++ Games Programming

handler.h
[if = swe tinea handler.h

fifndef HANDLER_H

fidefine HANDLER_H

#include <mem.h>

include "hand.h"
include "1inklist.h"

struct subscription {

Hand* hand;
callback cb;
subscription(Hand*h, callback c) : hand(h), cb(c)

{1}

+s

class EventHandler ({

public:
~EventHandler()

{ reset(); }

void add(Hand*,callback);
void del(Hand*, callback);
void delHand(Hand*);
void execute_callbacks(int pl=0, int p2=0, int p3=0);
void reset();
int getnum();

LinkedList<subscription> slist;
};

fendi f

APPENDIX B: Theatrix C++ Header Files 281

jsfold.h
J] === jsfold.h

{Hi fndef JSFOLD_H

ffdefine JSFOLD_H

finclude "handler.h"
f#include "folder.h"

class Hand;

class JoystickFolder : public Folder {

void reset_slot(int);
EventHandler buttonllist;
EventHandler button2list;
EventHandler 1ist;
friend class JoystickServer;

public:
void register_joystickbutton(Hand*,int button,callback);
void unregister_joystickbutton(Hand*,int button,callback);
void register_joystickmove(Hand*,callback);
void unregister_joystickmove(Hand*,callback);
void delHand(Hand*);
void reset();
void dispatch(int, int, int);

+s

fendi f

282 C++ Games Programming

jssrvr.h
fl =ssewemnny jssrvr.h

fHifndef JSSRVR_H

fidefine JSSRVR_H

f#include "server.h"

class JoystickServer : public Server {

friend class Theatrix;
int dz;
int xadj, yadj;
int cx, cy;
int 1x, ty;
int rx, by;
int joystick_supported;
void startup();
int setting(int *x, int *y);
void calibrate(char *pos, int *x, int *y);

public:
JoystickServer();
void check(Folder&);

Fs

{endif

APPENDIX B: Theatrix C++ Header Files 283

kdfold.h
ACREEEREEEE kdfold.h
#fifndef KDFOLD_H

fidefine KDFOLD_H

{include "handler.h"
f#include "folder.h"
{include "debug.h"
const int MAXDOWNENTRY = 20;

class Hand;

struct HotkeyEntry {

int code;
EventHandler list;

};
class HotkeyFolder : public Folder {

void reset_slot(int);
void thxregister_key(Hand*,int key,callback);

int numentries;
HotkeyEntry entry[MAXDOWNENTRY];

friend class HotkeyServer;
public:

HotkeyFolder() { numentries=0; }

void register_key(Hand*,int key,callback);
void unregister_key(Hand*,int key,callback);
void delHand(Hand*);
void reset();
void dispatch(int, int, int);

1s

inline void HotkeyFolder::register_key(Hand* hand,
int code,callback cb)

{

thxregister_key(hand,code,cb);
Assert (numentries <= MAXDOWNENTRY);

}

fendi f

284 C++ Games Programming

kdsrvr.h
1] o------ kdsrvr.h

#ifndef KDSRVR_H

fidefine KDSRVR_H

#include "server. ph"

class HotkeyServer : public Server {

void startup();
void shutdown();

friend class Theatrix;
public:

void check(Folder&);
static int newtick;

bi

fendi f

APPENDIX B: Theatrix C++ Header Files 285

keyfold.h
Bil mnie = ie keyfold.h
#ifndef KEYFOLD_H

fdefine KEYFOLD_H

f#include "hand.h"
f#include "handler.h"
#include "folder.h"
{include "debug.h"
const int NUMKEYS = 175;
const int AUX_OFFSET = 71;
class KeystrokeFolder : public Folder {

int adjust_key(int);
EventHandler key[NUMKEYS];

friend class KeystrokeServer;
public:

KeystrokeFolder() : Folder(key, NUMKEYS) { }

void register_key(Hand*,int key,callback);
void unregister_key(Hand*,int key,callback);
void reset();
void dispatch(int, int, int);

Fi

inline int KeystrokeFolder::adjust_key(int k)

{

if ((k&0xff00) != 0)
k = ((k>>8)&0xff)+AUX_OFFSET;

Assert(k >= 0 && k < NUMKEYS);

return k;
}

inline void KeystrokeFolder::register_key(Hand* hand,

int k,callback cb)
{ key[adjust_key(k)].add(hand,cb); }

inline void KeystrokeFolder::unregister_key(Hand* hand,

int k,callback cb)
{ key[adjust_key(k)].del(hand,cb); }

fendi f

286 C++ Games Programming

keysrvr.h
1] -----e-- keysrvr.h

fHifndef KEYSRVR_H

fidefine KEYSRVR_H

#include "server.h"

class KeystrokeServer : public Server {

public:
void check(Folder&);

1:

fendi f

APPENDIX B: Theatrix C++ Header Files 287

linklist.h

fl em mme Tinklist.h
// a template for a linked list

fifndef LINKLIST_H

fidefine LINKLIST_H

/l --- the linked 1ist entry
template <class T>

class ListEntry {

friend class LinkedList<T>;
T *thisentry;
ListEntry<T> *nextentry;
ListEntry<T> *preventry;
ListEntry(T *entry);

ks

template <class T>

// ---- the linked list
class LinkedList {

// --- the listhead
ListEntry<T> *firstentry;
ListEntry<T> *lastentry;
ListEntry<T> *iterator;
short int entrycount;
T *CurrentEntry();
void RemoveEntry(ListEntry<T> *entry);
void InsertEntry(T *entry);
void InsertEntry(T *entry, short int pos);
void RemoveEntry(short int pos);

public:
LinkedList();
virtual ~LinkedList()

{ ClearList(); }

void AppendEntry(T *entry);

288 C++ Games Programming

void InsertEntry(T *entry, T *curr);
void RemoveEntry(T *entry = 0);
T *FindEntry(short int pos);
short int FindEntry(T *entry);
T *FirstEntry();

*LastEntry();
*NextEntry();
*PrevEntry();
*NextEntry(T *entry);
*PrevEntry(T *entry);

void ClearList();
short int EntryCount() const

{ return entrycount; }

BE

BE

¥;
template <class T>

// ---- construct a linked list
LinkedList<T>::LinkedList()

{

iterator = 0;

firstentry = 0;

lastentry = 0;
entrycount = 0;

}

template <class T>

/l ---- remove all entries from a linked list
void LinkedList<T>::ClearlList()
{

ListEntry<T> *Tentry = firstentry;
while (lentry != 0) ({

ListEntry<T> *nxt = lentry->nextentry;
delete lentry;
lentry = nxt;

}

iterator = 0;

firstentry = 0;

APPENDIX B: Theatrix C++ Header Files 289

lastentry = 0;
entrycount = 0;

}

// ---- construct a linked list entry
template <class T>

ListEntry<T>::ListEntry(T *entry)
{

thisentry = entry;
nextentry = 0;

preventry = 0;
}

template <class T>

// ---- append an entry to the linked Tlist
void LinkedList<T>::AppendEntry(T *entry)
{

ListEntry<T> *newentry = new ListEntry<T>(entry);
newentry->preventry = Tastentry;
if (lTastentry)

lastentry->nextentry = newentry;
if (firstentry == 0)

firstentry = newentry;
lastentry = newentry;
entrycount++;

}

template <class T>

// ---- return the current linked list entry
T *LinkedList<T>::CurrentEntry()
{

return iterator ? iterator->thisentry : 0;
}

template <class T>

// ---- return the first entry in the Tinked list
T *LinkedList<T>::FirstEntry()
{

iterator = firstentry;

290 C++ Games Programming

return CurrentEntry();
}

template <class T>

// ---- return the last entry in the linked Tist
T *LinkedList<T>::LastEntry()
{

iterator = lastentry;
return CurrentEntry();

}

template <class T>

// ---- return the next entry following the specified one
T *LinkedList<T>::NextEntry(T *entry)
{

FindEntry(entry);
return NextEntry();

}

template <class T>

// ---- return the next entry in the linked 1ist
T *LinkedList<T>::NextEntry()
{

if (iterator == 0)
iterator = firstentry;

else
iterator = iterator->nextentry;

return CurrentEntry();
}

template <class T>

// ---- return the previous entry ahead of the specified one
T *LinkedList<T>::PrevEntry(T *entry)
{

FindEntry(entry);
return PrevEntry();

APPENDIX B: Theatrix C++ HeaderFiles 291

}

template <class T>

// ---- return the previous entry in the linked 1ist
T *LinkedList<T>::PrevEntry()
{

if (iterator == 0)

iterator = lastentry;
else

iterator = iterator->preventry;
return CurrentEntry();

}

template <class T>

// ---- remove an entry from the linked list by position
void LinkedList<T>::RemoveEntry(short int pos)
{

FindEntry(pos);
if (iterator != 0)

RemoveEntry (iterator);
}

template <class T>

// ---- remove an entry from the linked list by entry address
void LinkedList<T>::RemoveEntry(ListEntry<T> *Tentry)
{

if (lentry == 0)
return;

if (lentry == iterator)
iterator = Tentry->preventry;

/! ---- repair any break made by this removal

if (lentry->nextentry)
lentry->nextentry->preventry = lentry->preventry;

if (lentry->preventry)
lentry->preventry->nextentry = lentry->nextentry;

// --- maintain listhead if this is last and/or first
if (lentry == lastentry)

lastentry = lentry->preventry;

292 C++ Games Programming

if (Tentry == firstentry)
firstentry = lentry->nextentry;

delete lentry;
--entrycount;

}

template <class T>

// ---- remove current or specified entry from linked list
void LinkedList<T>::RemoveEntry(T *entry)
{

if (entry I= 0)

FindEntry(entry);
RemoveEntry (iterator);

}

template <class T>

// ---- insert an entry into the linked 1ist ahead of another
void LinkedList<T>::InsertEntry(T *entry, T *curr)
{

FindEntry(curr);
InsertEntry(entry);

}

template <class T>

// ---- insert an entry into the linked list by position
void LinkedList<T>::InsertEntry(T *entry, short int pos)
{

FindEntry (pos);
InsertEntry(entry);

}

template <class T>

// ---- insert an entry into the linked 1ist ahead of iterator
void LinkedList<T>::InsertEntry(T *entry)
{

if (iterator == 0)
AppendEntry(entry);

else {

ListEntry<T> *newentry = new ListEntry<T>(entry);

APPENDIX B: Theatrix C++ Header Files 293

newentry->nextentry = iterator;
if (iterator) {

newentry->preventry = iterator->preventry;
iterator->preventry = newentry;

}

if (newentry->preventry)
newentry->preventry->nextentry = newentry;

if (iterator == firstentry)
firstentry = newentry;

iterator = newentry;
entrycount++;

}

}

template <class T>

// ---- return a specific linked 1ist entry
T *LinkedList<T>::FindEntry(short int pos)
{

iterator = firstentry;
while (iterator && pos--)

iterator = iterator->nextentry;
return CurrentEntry();

}

template <class T>

// ---- return a specific linked list entry number
short int LinkedList<T>::FindEntry(T *entry)
{

short int pos = 0;
if (entry == 0) {

pos = entrycount;
iterator = 0;

}

else |
iterator = firstentry;
while (iterator) ({

if (entry == iterator->thisentry)

294 C++ Games Programming

break;
iterator = iterator->nextentry;
pos++;

}

}

return pos;
}

fendi f

APPENDIX B: Theatrix C++ HeaderFiles

mcfold.h
Jf o------ mcfold.h
#ifndef MCFOLD_H

fidefine MCFOLD_H

{include "handler.h"
#include "folder.h"
class Hand;
class MouseclickFolder : public Folder {

void reset_slot(int);
EventHandler leftbuttonlist;
EventHandler rightbuttonlist;
friend class MouseclickServer;

public:
void register_mouseclick(Hand*,int button,callback);
void unregister_mouseclick(Hand*,int button,callback);
void delHand(Hand*);
void reset();
void dispatch(int, int, int);

¥;

fendi f

295

296 C++ Games Programming

mcsrvr.h

I =m woes dE mesrvr.h
##ifndef MCSRVR_H

fidefine MCSRVR_H

finclude "server.h"

class MouseclickServer : public Server {

public:
void check(Folder&);

¥;

fendi f

APPENDIX B: Theatrix C++ Header Files 297

media.h
ol AREER media.h

#ifndef MEDIA_H

ftdefine MEDIA_H

include "xms.h"
#include "settings.h"

Jnana media clip (sound or graphic)
struct MediaClip

short int w, h;
long size;
char *buf;
long xoffset;
MediaClip();
~MediaClip()

{ delete buf; }

Ys

// ---- media library of sound or graphic clips
struct Medialib {

char name[13];
short int clipcount;
MediaClip* clip;
short int xms_handle;
Medialib();
~Medialib();

Fs

class Media (

static short int use_xms;
short int bufsize;
char *buffer;

298 C++ Games Programming

protected:
static Medialib libraries[MAXFXLIBS];
static short int libcount;
Media();
~Media();

public:
static void set_xms(int mode)

{ use_xms = mode; }

void Toad_library(char *1ibfile);
MediaClip& getclip(int 1ib, int clip);
static short int library_number(char *fname);
static short int clipcount(int Tibno)

{ return libraries[1ibno].clipcount; }

virtual int hasdimensions() = 0;
1:

class GraphicsMedia : public Media {

public:
GraphicsMedia() { }

virtual int hasdimensions()
{ return 1; }

5

class SoundMedia : public Media (

public:
SoundMedia() { }

virtual int hasdimensions()
{ return 0; }

ks

fendi f

APPENDIX B: Theatrix C++ Header Files 299

mmfold.h
Wl rm mmfold.h
#ifndef MMFOLD_H

fidefine MMFOLD_H

#include "handler.h"
#include "folder.h"
class Hand;
class MousemoveFolder : public Folder ({

void reset_slot(int);
EventHandler list;
friend class MousemoveServer;

public:
void register_mousemove(Hand*,callback);
void unregister_mousemove(Hand*,callback);
void delHand(Hand*);
void reset();
void dispatch(int, int, int);

Hs

fendi f

300 C++ Games Programming

mmsrvr.h
Il == 2s mmningly mmsrvr.h
#ifndef MMSRVR_H

ftdefine MMSRVR_H

fHinclude “"server.h"
class MousemoveServer : public Server {

int ox, oy;
public:

MousemoveServer()
{ox =20; oy =0;}

void check(Folder&);
}s

fendi f

APPENDIX B: Theatrix C++ Header Files 301

msgfold.h
bp -------- msgfold.h
ifndef MSGFOLD_H

ftdefine MSGFOLD_H

#include "queue.h"
#include “"folder.h"
#include "debug.h"
class Hand;
class MessageFolder : public Folder ({

EventHandler messagenumber[MAXMESSAGE];
Queue msgQ;

friend class MessageServer;
public:

MessageFolder() : Folder(messagenumber, MAXMESSAGE) { }

void add_message(Hand*,int rate,callback);
void del_message(Hand*,int rate,callback);
void reset();
void send(int,int,int);
void dispatch(int, int, int);

bs

inline void MessageFolder::add_message(Hand* h,int m,callback c)
{

Assert(m >= 0 && m < MAXMESSAGE);

messagenumber[m].add(h,c);
}

inline void MessageFolder::del_message(Hand* h,int m,callback c)
{

Assert(m >= 0 && m < MAXMESSAGE);

messagenumber[m].del(h,c);
}

inline void MessageFolder::send(int msg,int datal, int data?)
{

Assert(msg >= 0 && msg < MAXMESSAGE);

msgQ.put(msg,datal,data2);
}

fendi f

302 C++ Games Programming

msgsrvr.h
ff w=-==ezigs msgsrvr.h

f#ifndef MSGSRVR_H

ftdefine MSGSRVR_H

fHinclude "server.h"

class MessageServer : public Server
public:

void check(Folder&);
Ii

endif

(

APPENDIX B:

music.h
gf serene music.h

{Hi fndef MUSIC_H

{define MUSIC_H

f#include "hand.h"

class MusicHand : public Hand {

friend class Theatrix;
char *scorefilename;
char *score;
static char *drivers[3];
static char *driverptr[3];
static char *realptr[3];
static void startup();
static void shutdown();
static int load_sound_drivers();
static int init_driver();
static void terminate_driver();
static void delete_drivers(int 1);
static int music_supported;

protected:
virtual void initialize();

public:
MusicHand(char *sc);
virtual ~MusicHand();
void play_music_clip(int index);
int music_clip_is_playing();
void stop_music_clip();
void load_score(char*);
int isconducting()

{ return music_supported; }

Yi

fendi f

Theatrix C++ HeaderFiles 303

304 C++ Games Programming

netfold.h
fof mmm ama netfold.h
fi fndef NETFOLD_H

fidefine NETFOLD_H

ffinclude "queue.h"
fHinclude "folder.h"
{include "debug.h"
class Hand;
class EventHandler;
class NetpackFolder : public Folder {

EventHandler packet[MAXNETPACK];

friend class NetpackServer;
public:

NetpackFolder() : Folder(packet,MAXNETPACK) { }

void add_netpack(Hand*,int p,callback);
void del_netpack(Hand*,int p,callback);
void reset();
void dispatch(int, int, int);

J:
inline void NetpackFolder::add_netpack(Hand* h,int p,

callback cb)
{

Assert(p >= 0 && p < MAXNETPACK);

packet[p].add(h,cb);
}

inline void NetpackFolder::del_netpack(Hand* h,int p,
callback cb)

{

Assert(p >= 0 && p < MAXNETPACK);

packet[p].del(h,cb);
}

fendif

APPENDIX B: Theatrix C++ Header Files 305

netsrvr.h

eR netsrvr.h

##ifndef NETSRVR_H

fidefine NETSRVR_H

include "server.h"
class CommPort;

class NetpackServer : public Server {

int netpacks_active;
int port;
CommPort* commport;
void startup();
void shutdown();
friend class Theatrix;

public:
void check(Folder&);
void send(int);

ks

fendi f

306 C++ Games Programming

perform.h
1 ==esrne perform.h
al fndef PERFORM_H

ftdefine PERFORM_H

al
iH

al
al
iH

al
cl

nclude <fastgraf.h>
nclude "vocal.h"
nclude "settings.h"
nclude "debug.h"
nclude "xms.h"
nclude "media.h"
ass Performer : public VocalHand {

static GraphicsMedia gfx1ib;
int curlib;
int curfont;
void thx_show_print(int,int,char*);
void thx_show_number(int,int,int);

protected:
Performer(Director* d=0);

virtual ~Performer();
void Toad_gfx1ib(char*);
void set_gfxlib(char*);
void show_image(int x,int y,int imageno);
void show_frame(int x,int y,int imageno);
void show_clipped_image(int x,int y,int imageno);
int get_image_width(int imageno);
int get_image_height(int imageno);
int get_num_images():
void Toad_gfxfont(char*);
void set_gfxfont(char*);
void show_print(int,int,char*);
void show_number(int,int,int);
int get_char_width(char);
int get_char_height(char);

APPENDIX B: Theatrix C++ HeaderFiles 307

inline void Performer::show_image(int x,int y,int imageno)

{

Assert(curlib!=-1);
Assert(imageno>0 && imageno<=Media::clipcount(curlib));
MediaClip& mc = gfx1ib.getclip(curlib,imageno-1);
fg_move(x,y+mc.h-1);
fg_drwimage(mc.buf,mc.w,mc.h);

}

inline void Performer::show_frame(int x,int y,int imageno)

{

Assert(curlibl=-1);
Assert(imageno>0 && imageno<=Media::clipcount(curlib));
MediaClip& mc = gfxlib.getclip(curlib,imageno-1);
fg_move(x,ytmc.h-1);
fg_putimage(mc.buf,mc.w,mc.h);

}

inline void Performer::show_clipped_image(int x,int y,
int imageno)

Assert(curlibl=-1);
Assert (imageno>0 && imageno<=Media::clipcount(curlib));
MediaClip& mc = gfxlib.getclip(curlib,imageno-1);
fg_move(x,y+mc.h-1);
fg_clpimage(mc.buf,mc.w,mc.h);

}

inline int Performer::get_image_width(int imageno)

{

Assert(curlibl=-1);
MediaClip& mc = gfx1ib.getclip(curlib,imageno-1);
return mc.w;

}

inline int Performer::get_image_height(int imageno)

{

Assert(curlibl=-1);
MediaClip& mc = gfx1ib.getclip(curlib,imageno-1);

308 C++ Games Programming

return mc.h;
}

inline int Performer::get_num_images()
{

Assert(curlibl=-1);
return Media::clipcount(curlib);

}

inline int Performer::get_char_width(char ch)
{

Assert(curfont!=-1);
MediaClip& mc = gfxlib.getclip(curfont,ch-48+26);
return mc.w;

}

inline int Performer::get_char_height(char ch)
;

Assert(curfont!=-1);
MediaClip& mc = gfxlib.getclip(curfont,ch-48+26);
return mc.h;

}

inline void Performer::show_print(int x,int y,char* str)
{

Assert(curfont!=-1);
thx_show_print(x,y,str);

}

inline void Performer: :show_number(int x,int y,int num)
{

Assert(curfont!=-1);
thx_show_number(x,y,num):

}

fendi f

APPENDIX B: Theatrix C++ HeaderFiles 309

player.hA player.h

#ifndef PLAYER_H

ftdefine PLAYER_H

f#include "perform.h"

class SceneDirector;

class Player : public Performer {

char *gfxlib; // name of .gfx file with Player images

char *sfx1ib; // name of .sfx file with Player sounds

short int x, y; // current screen location
short int px, py: // previous screen location
short int h, w; // current image size
short int ph, pw; // previous image size
short int imageno; // current image

short int is_visible; // true if Player is being displayed
short int ticker;
short int interval;
short int clipped; // true if image is to be clipped
short int cxl, cyl, cx2, cy2; // clip coordinates
short int in_update_position;
short int posted_x, posted_y; // posted screen location
short int posted_imageno; // posted image

void displayframe();
friend class SceneDirector;

protected:
SceneDirector *director;
virtual void initialize();

public:
Player(char *gl = 0, char *s1 = 0, int intv = 1);

virtual ~Player() { }

310 C++ Games Programming

1d

void set_imageno(short int in);
short int get_imageno()

{ return imageno; }

short int getx() const
{ return x; }

short int gety() const
{ return y; }

void setx(short int nx);
void sety(short int ny);
void setxy(short int nx, short int ny);
short int getheight() const

{ return h; }
:

short int getwidth() const
{ return w; } Z

void stillframe(short int im, short int wait);
virtual void appear()

{ is_visible = 1; }

virtual void disappear();
int isvisible()

{ return is_visible; }

virtual void update_position() { }

void clip(int x1, int yl, int x2, int y2);
void unclip()

{ clipped = 0; }

int isclipped()
{ return clipped; }

void setinterval(short int inv)
{ interval = inv; ticker = 0: }

fendi f

APPENDIX B: Theatrix C++ Header Files 311

queue.h
flor nernse queue. h

#ifndef QUEUE_H

{define QUEUE_H

const int QLEN = 50;

struct messageinfo {

int msg;

int datal;
int data2;

3s

class Queue {

messageinfo a[QLEN];

int head,tail;
int inc(int);

public:
Queue();
void put(int,int,int);
void get(int*,int*,int*);
int isfull();
int isempty();

1s

fendi f

312 C++ Games Programming

scancode.h
1] =----- scancode.h

{ifndef SCANCODE_H

fidefine SCANCODE_H

Il =3scscnsnvnasiogimunssioncmmsnliss MISC
const int SCAN_SPACE = 0x39;
const int SCAN_ENTER = Oxlc;
const int SCAN_INSERT = 0x52;
const int SCAN_DEL = 0x53;
const int SCAN_END = 0x4f;
const int SCAN_PGDN = 0x51;
const int SCAN_PGUP = 0x49;
const int SCAN_HOME = 0x47;
const int SCAN_LEFT = 0x4b:
const int SCAN_UP = 0x48;
const int SCAN_RIGHT = 0x4d;
const int SCAN_DOWN = 0x50;
const int SCAN_BKSPACE = 0x0e;
const int SCAN_TAB = 0x0f;
const int SCAN_ESCAPE = 0x01;
const int SCAN_ESC = 0x01;
Il =ce-eSepa@ol bie sc mir smsnniin on rare
const int SCAN_CTRL = 0x1d;
const int SCAN_LSHIFT = 0x2a;
const int SCAN_RSHIFT = 0x36;
const int SCAN_PRINTSCREEN = 0x37:
const int SCAN_ALT = 0x38;
const int SCAN_NUMLOCK = 0x45;
const int SCAN_SCROLLLOCK = 0x46;aTN, F-keys
const int SCAN_F1 = 0x3b;
const int SCAN_F2 = 0x3c;
const int SCAN_F3 = 0x3d;

APPENDIX B: Theatrix C++ HeaderFiles 313

const int SCAN_F4 = 0x3e;

const int SCAN_F5 = 0x3f;

const int SCAN_F6 = 0x40;

const int SCAN_F7 = 0x41;

const int SCAN_F8 = 0x42;

const int SCAN_F9 = 0x43;

const int SCAN_F10 = 0x44;

Jif smeemmesoscennsomacvisnsn enn nn ALPHA

const int SCAN_A = Oxle;

const int SCAN_B = 0x30;

const int SCAN_C = 0x2e;

const int SCAN_D = 0x20;

const int SCAN_E = 0x12;

const int SCAN_F = 0x21;

const int SCAN_G = 0x22;

const int SCAN_H = 0x23;

const int SCAN_I = 0x17;

const int SCAN_J = 0x24;

const int SCAN_K = 0x25;

const int SCAN_L = 0x26;

const int ;
SCAN_M = 0x32;

const int SCAN_N = 0x31;

const int SCAN_O0 = 0x18;

const int SCAN_P = 0x19;

const int SCAN_Q = 0x10;

const int SCAN_R = 0x13;

const int SCAN_S = Ox1f;

const int SCAN_T = 0x14;

const int SCAN_U = 0x16;

const int SCAN_V = 0x2f;

const int SCAN_W = 0x11;

const int SCAN_X = Ox2d;

const int SCAN_Y = 0x15;

const int SCAN_Z = Ox2c;

fendif

314 C++ Games Programming

scenedir.h
ll o----e-- scenedir.h
#ifndef SCENEDIR_H

fidefine SCENEDIR_H

#incTude "scenery.h"
finclude "viddir.h"
#include "Tinklist.h"
fiinclude "player.h"
class SceneDirector : public SceneryDirector {

static SceneDirector *thisscene;
static int lastsceneid;
int snapshot;
virtual void pre_timer_tick() {

virtual void post_timer_tick() {

void scanframes();
friend class Player;
void addplayer(Playerd pl);
void on_s(int = 0);

protected:
LinkedList<Player> plist;
virtual void display();
virtual void hide();
virtual void on_timer();

public:
SceneDirector(char *scfile, short int trans=ClearEveryTime);
virtual ~SceneDirector() { }

void ChangeZOrder(Player *pl, Player *p2)
{ plist.RemoveEntry (pl); plist.InsertEntry(pl, p2); }

void MoveZToFront (Player *p)
{ plist.RemoveEntry(p); plist.AppendEntry(p); }

ks

fendi f

}

}

APPENDIX B: Theatrix C++ HeaderFiles 315

scenery.h
Jl irr -necenee scenery.h
ifndef SCENERY_H

ffdefine SCENERY_H

“finclude "viddir.h"
struct Mice {

short int x1, yl, x2, y2; // screen rectangle
char *cursor; // cursor hotspot(x,y) mask and map

callback func; // function to call if left click
IH

{define DECLARE_MOUSECURSORS

static Mice MouseCursorTable[];
virtual Mice *GetMouseCursors() \

{ return MouseCursorTable; }

fidefine CURSORLIST(scene) \
Mice scene::MouseCursorTable[] = {

#define MOUSE_CURSOR(x1,yl,x2,y2,crs,fn) \

{x1,yl1,x2,y2,crs,(callback)fn},
{define ENDCURSORLIST \

(E=1, 21, “4, =1.}. \
Fa

extern char UPCURSOR[];

extern char DNCURSOR[];

extern char RTCURSOR[]:

extern char LFCURSOR[];

extern char CNCURSOR[];

extern char ULCURSOR[];

extern char URCURSOR[];

extern char LLCURSOR[]:

extern char LRCURSOR[];

extern char DEFAULT[I;

ftdefine UPPERLEFTARROWCURSOR ULCURSOR

fidefine UPARROWCURSOR UPCURSOR

#define UPPERRIGHTARROWCURSOR URCURSOR

\
\

316 C++ Games Programming

fidefine LEFTARROWCURSOR LFCURSOR
fidefine CENTERCURSOR CNCURSOR

define RIGHTARROWCURSOR RTCURSOR
ftdefine LOWERLEFTARROWCURSOR LLCURSOR
fidefine DOWNARROWCURSOR DNCURSOR

ftdefine LOWERRIGHTARROWCURSOR LRCURSOR

fidefine DEFAULTCURSOR DEFAULT

const short int ClearEveryTime = -1;
const short int NoTransition = 0;
class SceneryDirector : public VideoDirector {

short int transition;
void show_mousecursor(char *cursor);
void mousemoved(int x, int y, int);
void mouseclicked(int x, int y);

protected:
char *scenery;
Mice *mousecursors;
DECLARE_CUELIST

virtual void display();
virtual void stop_director()

{ quit(); }

virtual void on_escape()
{ stop_director(); }

virtual void on_space()
{ stop_director(); }

virtual void on_enter()
{ stop_director(); }

virtual const Type_info& get_next_director();
virtual void initialize();
virtual Mice *GetMouseCursors()

{ return 0; }

virtual void refresh_display();
virtual void display_original_scenery();

APPENDIX B: Theatrix C++ Header Files 317

public:
SceneryDirector(char *pcxfile = 0,

short int trans = ClearEveryTime);
virtual ~SceneryDirector()

{}
33

fendi f

318 C++ Games Programming

serial.h
[1] -==-=-- serial.h

{ifndef SERIAL_H

define SERIAL_H

#include <dos.h>
ffundef disable

typedef int bool;
const int true = 1;
const int false = 0;

const int systimer = 8;

class Timer {

int timer;
public:

Timer()
{ timer = -1; }

bool timed_out()
{ return timer == 0; }

void set(int secs)
{ timer=secs*182/10+1; }

void disable()
{ timer = -1; }

bool running()
{ return timer > 0; }

void countdown()
{ --timer; }

bool disabled()
{ return timer == -1; }

}:

const int xon = 17;

APPENDIX B: Theatrix C++ Header Files 319

const
const
const
const

I ----
const
I] =~
const
const
const

I ----
const
const
const

I ===
const

I ===
const
const
const

I ===

int xoff = 19;°
int PICO1 = 0x21; // 8259 Programmable Interrupt Ctrir
int PICOO = 0x20; // " 5 > "

int EOI = 0x20; // End of Interrupt command

seesecmenn- line status register values

int XmitDataReady = 0x20;
erin mE modem control register values

int DTR = 1;

int RTS = 2;

int 0UT2 = 8;
Rinse Bd modem status register values

int RLSD = 0x80;

int DSR = 0x20;

int CTS = 0x10;

mewn interrupt enable register signals
int DataReady = 1;

ER hi serial input interrupt buffer
int BufSize = 1024;

int SafetylLevel = (BufSize/4);
int Threshold = (SafetylLevel*3);

- com port initialization parameter byte
union portinit {

struct
2

1

unsigned parity : 3;
1

1unsigned divlatch :

unsigned wordlen :

unsigned stopbits :

unsigned brk

} initbits;
char initchar;

ks

struct CommParameters {

int port;
int parity;
int stopbits;

320 C++ Games Programming

int databits;
int baud;

¥s

class CommPort {

portinit initcom;
char *mp_recvbuff;
bool xonxoff_enabled;
char *mp_nextin, *mp_nextout;
int buffer_count;
CommParameters commparms;
bool waiting_for_xon;
bool waiting_to_send_xon;
static CommPort *mp_CommPort;
int timeout;
static Timer serialtimer;

int BasePort()
{ return (0x3f8-((commparms.port-1)<<8));: }

int TxData()
| { return BasePort(); }

| int RxData()
{ return BasePort(); }

int DivLSB()
{ return BasePort(); }

int DivMSB()
{ return BasePort()+1; }

int IntEnable()
{ return BasePort()+1; }

int Intldent()
{ return BasePort()+2; }

int LineCt1()
{ return BasePort()+3; }

int ModemCt1()
{ return BasePort()+4; }

APPENDIX B: Theatrix C++ HeaderFiles 321

int LineStatus()
{ return BasePort()+5; }

int ModemStatus()
{ return BasePort()+6; }

int irq()
{ return 4-(commparms.port-1); }

int vector()
{ return 12-(commparms.port-1); }

int ComIRQ()
{ return ~(1 << irq()); }

void CommInterrupt();
friend void interrupt newcomint(...);
friend void interrupt newtimer(...);

public:
CommPort (const CommParameters& cp);
~CommPort();
void Initialize();
int readcomm();
bool writecomm(int ch);
void clear_serial_queue();
bool carrier()

{ return (inp(ModemStatus()) & RLSD) != 0; }

bool input_char_ready()
{ return mp_nextin != mp_nextout; }

void SetTimeout(int to)
{ timeout = to; }

const CommParameters& CommParms()

{ return commparms; }

void EnableXonXoff()
{ xonxoff_enabled = true; 1}

void DisableXonXoff()
{ xonxoff_enabled = false; }

bs

fendi f

322 C++ Games Programming

server.h
fof “Fev server.h

fHifndef SERVER _H

fidefine SERVER_H

class Folder;

class Server {

virtual void startup() { }

virtual void shutdown() { }

public:
virtual void check(Folder&) = 0;

ks

fendi f

APPENDIX B: Theatrix C++ HeaderFiles 323

settings.h
Ff mar ann settings.h

#ifndef SETTINGS_H

fidefine SETTINGS_H

const int DEFAULT_VIDEO_MODE = 22;

const
const
const
const
const

const

const

{endif

int
int
int
int
int

int

int

MAXDIRECTORS = 20;
MAXHANDS = 250;
MAXFXLIBS = 30;
MAXMESSAGE = 200;
MAXNETPACK = 100;

NUMPATCHES = 25;

CLOCKTICKS = 18;

11

/1
/1
/1
11

//
rl

Directors in one application
1imit of Hands in application
GFX/SFX 1ibs
highest message number available
highest network packet available

used only by 'set_synch_patch’
and 'synch_patches’

324 C++ Games Programming

standard.h
// ---- standard.h

#Hifndef STANDARD_H

ffdefine STANDARD_H

enum boolean
{

False=0, True, FALSE=0, TRUE,

Failure=0, Success, FAILURE=0, SUCCESS,

No=0, Yes, NO=0, YES,

0ff=0, On, OFF=0, ON

Ja

const
const
const

const
const
const
const

fendi f

int
int
int

int
int
int
int

ERROR = -1;
0K = 1;
NOT_OK = 0;

LEFTMOUSEBUTTON = 1;
RIGHTMOUSEBUTTON = 2;
BUTTONONE = 1;
BUTTONTWO = 2;

theatrix.h
Lf wis mimes theatrix.h

f#ifndef
ftdefine

include

finclude
finclude
f#include
finclude
f#include
f#include
f#include
finclude
f#include
f#include
#include
{include
finclude
#include
fHinclude
#include
finclude
#include
include
finclude
fHinclude
f#include
{include
#include
#include
f#include

THEATRIX_H

THEATRIX_H

<typeinfo.h>

"hand.h"
"director.h"
"scenedir.h"
"scenery.h"
"ascii.h"
"scancode.h"
"standard.h"
"perform.h"
"viddir.h"
"music.h"
"keysrvr.h"
"kdsrvr.h"
"timesrvr.h"
"msgsrvr.h"
"mespvryh”
"mmsrvr.h"

ssrvr.h?
"netsrvr.h"
"keyfold.h"
"kdfold.h"
"timefold.h"
"msgfold.h"
"mcfold.h"
"mmfold.h"

"jsfold.h"
"netfold.h"

APPENDIX B: Theatrix C++ Header Files 325

326 C++ Games Programming

cl ass Theatrix {

int videomode;
Director* director[MAXDIRECTORS];
int dcount;
static KeystrokeServer kss;
static HotkeyServer hks;
static TimerServer ts;
static MessageServer ms;

static MouseclickServer mcs;
static MousemoveServer mms;

static JoystickServer js;
static NetpackServer ns;
int find_director_index(const Type_info& id);
void add_director(Director* d);
friend class Director;

protected:
Theatrix(char* str);

~Theatrix();
public:

Jaa

void go(int index=0);
void go(const Type_info&);
void enable_netpacks();
void use_commport(int);
void enable_joystick();
void joystick_extremes(int *x1, int *yl, int *x2, int *y2);
void use_video_mode(int vmode);
void set_xms(int mode);
static void fatal(const char*,const char*,int);
static void fatal(const char*);
static void system_shutdown();
static Theatrix *current_game;

fendi f

APPENDIX B: Theatrix C++ Header Files 327

timefold.h

Bliss timefold.h
{ifndef TIMEFOLD_H

ftdefine TIMEFOLD_H

{include "handler.h"
f#finclude "folder.h"
class Hand;
class TimerFolder : public Folder ({

EventHandler tick[CLOCKTICKS];

friend class TimerServer;
public:

TimerFolder() : Folder(tick, CLOCKTICKS) { }

void add_timer(Hand*,int rate,callback);
void del_timer(Hand*,int rate,callback);
void reset();
void dispatch(int tickno, int, int)

{ tick[tickno].execute_callbacks(); }

1;
fendi f

328 C++ Games Programming

timesrvr.h
Ll ==smuse timesrvr.h
fHifndef TIMESRVR_H

ftdefine TIMESRVR_H

f#include "server.h"
class TimerServer : public Server {

int tickno;
void startup();
void shutdown();
friend class Theatrix;

public:
void check(Folder&);
static int newtick;

3s

fendi f

APPENDIX B: Theatrix C++ Header Files 329

viddir.h
Df mrs ie viddir.h
#ifndef VIDDIR_H

ffdefine VIDDIR_H

{include "director.h"
{include "settings.h"
const int BUFFERPAGE = 2;

struct FlicHdr {

long int size;
char signature[2];
short int frames;
short int width;
short int height;
short int bitspixel;
short int reserved;
long int delay;
char filler2[108];

bs

struct patch_struct {

int x1,y1,x2,y2;
bs

class VideoDirector : public Director ({

static int vpage;
static patch_struct patch[NUMPATCHES];

static int patchcount;
static int flicplaying;
static int flicframes;
static int flicnonstop;
static int delay;
static int first:
static char flic_context[16];
static FlicHdr flic_header;
void on_hs(int);

protected:

330 C++ Games Programming

VideoDirector();
virtual ~VideoDirector();
void init_video();
void fill_background_buffer(int frompage);
void restore_page();
virtual void iterate_director();
virtual void on_s(int = 0);

public:
static
static
static
static
static
static
static
static
static
static
static
static
static
static

3

fendi f

void swap_video_pages();
void synch_video_pages();
void synch_patch(int,int,int,int);
int set_synch_patch(int x1,int yl,int x2,int y2);
int synch_patches(int frvpage = 1);
void restore_patch(int x1,int yl,int x2,int y2);
void flush_patch(int x1,int yl,int x2,int y2);
int show_pcx(char* fname);
void show_video(char* fname,int x,int y,int nonstop=0);
void stop_video();
int video_playing() { return flicplaying; }

int active_page() { return 1l-vpage; }

int visual_page() { return vpage; }

int install_palette(char*);

vocal.h
I] meee

APPENDIX B:

-- vocal.h

{ifndef VOCAL_HAND_H

ftdefine VOCAL_HAND_H

{include
f#include
{include

"hand.h"
"media.h"
"debug.h"

class VocalHand : public Hand {

enum Driver {

nodriver,
digpakdriver,
ctvoicedriver

Fi

int curlib;
static
static
static
static
static
static
static

SoundMedia sfx1ib;
Driver driver;
unsigned *isplaying;
unsigned port,irgq;
unsigned playing;
void startup();
void shutdown();

void thxplay_sound_clip(int index);
static
static
static
static
static
static
static
static
friend

void get_soundcard_settings();
Driver load_digpak_driver();
Driver load_ct_voice_driver();
void init_driver();
void terminate_driver();
void set_port(unsigned port);
void set_irq(unsigned irq);
void set_status_flag(char* ptr);
class Theatrix;

Theatrix C++ Header Files 331

332 C++ Games Programming

public:
VocalHand(Director* d=0) : Hand(d)

{3
virtual ~VocalHand() { }

void Toad_sfxlib(char*);
void set_sfxTib(char*);
void play_sound_clip(int index);
int sound_clip_is_playing();
void stop_sound_clip();
int get_num_clips();
int get_sound_clip_length(int index);

Fs

inline void VocalHand::play_sound_clip(int index)
{

Assert(curlib!=-1);
Assert (index>0 && index<=Media::clipcount(curlib));
thxplay_sound_clip (index);

}

inline int VocalHand::get_sound_clip_length(int index)
{

Assert(curlibl=-1);
MediaClip& mc = sfxlib.getclip(curlib,index-1);
return (int) mc.size;

}

fendi f

APPENDIX B: Theatrix C++ Header Files 333

xms.h

TH xms.h

{Hi fndef XMS_H

fidefine XMS_H

{include <dos.h>

int xms_present();
unsigned xms_available();
int xms_allocate(unsigned);
void xms_free(int);
void copy_xmstoconv(int, char far *, long, long);
void copy_convtoxms(int, char far *, Tong, long);

{endif

Bibliography

Abrash, Michael. Zen of Code Optimization. Coriolis Group Books, 1994.

Abrash, Michael. Zen of Graphics Programming. Coriolis Group Books, 1995.

Conger, Jim. C Programming for MIDI. M&T Books, 1988.

Conger, Jim. MIDI Sequencing in C. M&T Books, 1989.

Ferraro, Richard E. Programmer's Guide to the EGA and VGA Cards, 2nd
Edition. Addison-Wesley, 1990.

Gruber, Diana. Action Arcade Adventure Set. Coriolis Group Books, 1994.

LaMothe, André, John Ratcliff, Mark Seminatore, and Denise Tyler. Tricks of
the Game Programming Gurus. Sams Publishing, 1994.

Lampton, Christopher. Flights of Fantasy. Waite Group Press, 1993.

Lampton. Christopher. Gardens of Imagination. Waite Group Press, 1994.

Levy, Steven. Hackers. Dell, 1984.

Luse, Marv. Bitmapped Graphics Programming in C++. Addison-Wesley,
1993.

Mason, David K. Morphing On Your PC. Waite Group Press, 1994.

335

336 C++ Games Programming

Microsoft Mouse Programmer’s Reference. Microsoft Press, 1989.

Roberts, Dave. PC Game Programming Explorer. Coriolis Group Books,
1994.

Stolz, Axel. The Sound Blaster Book. Abacus, 1992.

Watkins, Christopher, and Stephen Marenka. Taking Flight. M&T Books,
1994.

Wilton, Richard. Programmer’s Guide to PC & PS/2 Video Systems.
Microsoft Press, 1987.

Young, Chris, and Drew Wells, Ray Tracing Creations, 2nd Edition. Waite
Group Press, 1994.

Glossary

3-D model
A computer data structure with data values that represent an image in
terms of its component objects positioned and scaled in a three-
dimensional coordinate system.

abstraction, level of
The working level of detail and knowledge at which a programmer writes
code. At higher levels of abstraction, the underlying system encapsulates
and hides more of the lower-level details.

active video page
The video page that the program reads from and writes to. The active
video page can be visible or hidden.

analog signal
A waveform represented in its true, continuous form.

337

338 C++ Games Programming

animation
The rapid display of a sequence of pictures that, when viewed, depicts a
moving object.

ASCII

The American Standard Code for Information Interchange, which
associates integer values to numbers, letters, and special characters.
Standard ASCII ranges from 0 to 127 and assigns values to digits, upper-
and lowercase letters, punctuation marks, form control characters, and
special transmission characters. Extended ASCII ranges from 128 to 255
and, on the PC architecture, assigns those values to foreign (non-English)
language characters and graphics characters.

background
The image that occupies the full screen in a game and that represents the
scenery in a scene.

baud rate
The speed in approximate bits per second that a serial port transmits and
receives data.

bitmapped graphics
The format that represents an image as an array of pixel values. There are
several such formats for bitmapped graphics data files. The most common
ones are .PCX, .BMP, TIFF, and .GIF. Each format is distinguished by the
way that it compresses image data and the format of the header data.

.BMP

The bitmapped graphics file format used in Microsoft Windows.

callback function

A user-defined function that the system calls when an event occurs. The
game program registers for event notification by requesting that specific
callback functions be called for specific events.

controller
A device that the game player uses to control the game. The keyboard,
mouse, and joystick are controllers.

GLOSSARY

conventional memory
The computer memory in the first megabyte of address space.

coordinates
The addressing system that specifies screen pixels in a column/row
scheme. The X axis is from zero to the highest horizontal resolution of the

screen. The Y axis is from zero to the highest vertical resolution of the

screen. Zero/zero addresses the upper left pixel. 320/240 addresses the

lower right pixel when the display is operating in Mode X.

CT-VOICE

The loadable driver program that plays sound effects through a Sound

Blaster card.

cue
An event that causes a callback function to be called.

digital signal

A waveform represented by digital values sampled at fixed intervals.

event
Something that happens outside of and asynchronous to the game

program. Clock ticks, keystrokes, mouse movements, mouse clicks,

joystick motion, joystick button presses, and receptions of network

packets are events.

FLC
A video clip file format originated by Autodesk Animator Pro.

flight simulator
A program that simulates aircraft flight. The program's user is the pilot.

The program displays an instrument panel and scenery through the
windshield of the simulated airplane.

GIF
Graphics Interchange Format. A proprietary bitmapped graphics file

format copyrighted by the CompuServe Information Service.

339

340 C++ Games Programming

hidden video page
One of the video pages that contains display data that the user does notsee.

interrupt
The interruption of a program's normal procedure of instruction
execution, usually caused by a an event—such as a key or button press—associated with a device, such as a controller or system timer,

loadable driver
A program that is read into memory as if it were a data file. The host
program executes the driver by calling memory offsets from the beginningof the loaded module or by issuing software interrupts.

message
A function call that the system makes to registered member functions ofthe game program. Messages report events to the game program.

MIDI

Musical Instrument Digital Interface. A standard for recording and
reproducing musical performances as packets of digital information. Eachpacket represents a note or event. Packets address channels, which areassigned to instrument sounds.

Mode X

The VGA graphics mode with a resolution of 320 by 240 and with 256distinct colors selected from a palette of 256KB possible colors.
modem

Modulator/demodulator. A device that allows two computers tocommunicate over voice-quality telephone lines. Each computer connectsto its modem through the computer's serial port. Both modems areconnected to the telephone lines at their respective sites. One computeroriginates a call and the other computer answers. After the connection iscompleted, the two computers communicate as if they were directlyconnected at their serial ports with a null modem cable.

GLOSSARY

mouse cursor
The graphical display that represents where the mouse is pointing. A

program can specify custom mouse cursor shapes, and it can select from a

standard set of mouse cursor shapes.

null modem
A cable that directly connects two computers at their serial ports. The

cable connects the transmit line of each computer to the receive line of the

other.

paint program
A program that allows you to construct graphical images by using

interactive tools to create and manipulate shapes, lines, colors, and

textures.

palette
A table of 256 integer values, with each value representing a color. The

size of the integers determines the number of colors that the palette can

choose from. Each VGA screen display has an associated palette. The data

bytes in video memory are vectors into the palette. Each data byte

represents a pixel. The pixel's color is determined by its corresponding

palette value.

palette normalization
The process whereby several bitmapped images are modified so that they

all use a common palette and can be displayed on the screen at the same

time.

patch
The sound assigned to a MIDI instrument.

PCX
A bitmapped graphics file format associated with ZSoft's PC Paintbrush

program and supported by the Windows Paintbrush program in Windows

versions prior to Windows 95.

341

342 C++ Games Programming

perspective
The visual property of sprite image components wherein more distant
images are rendered smaller and higher on the screen's Y coordinate thancloser ones.

photo-realism
The quality of a computer-generated image that makes it almost seem tobe a photograph. Often associated with ray-traced images.

pixel

Picture element. One dot on a video screen.
quantize

To smooth the pattern of notes played by a MIDI sequencer to a lowest
common resolution, such as the eighth note.

ray casting
Building an image of a scene by casting rays from the viewing positionuntil they intersect objects, at which time the pixel values of verticalstrips are computed. Ray casting depends on computer models of
symmetrical and perpendicular geometric shapes such as walls andcorridors.

ray tracing
Building an image from a 3-D model that includes light sources and aviewing position. The model specifies shapes, textures, and surfaces. Theshapes can have logical and hierarchical relations with one another. The
ray-tracing program computes the color value of each screen pixel bytracing from the light sources through transparent objects to the first
opaque object that the ray intersects and then back to the viewingposition.

render
To produce a displayable image from a 3-D computer model.

resolution
In video displays, the number of horizontal and vertical pixels that a videomode can display. In digital waveform recording, the minimum and

GLOSSARY

maximum values that a sample can represent expressed as the number of

bits in a sample.

sample
In digital signal processing, the single value of a point on a waveform. In

music reproduction, a note played by an instrument and recorded to be

combined with other recorded samples in the electronic reproduction of a

musical selection.

sampling rate
The rate, expressed in samples per second, at which samples are made

during the recording of a digital waveform.

scan code
The eight-bit value that the keyboard transmits to the computer when the

user presses a key.

scanner
A device that scans a drawing, photograph, or other image into a

bitmapped graphics format in the PC.

scenery
See “background.”

sequencer
A device that reads files of MIDI data and transmits the packets to

synthesizers. A sequencer can also record MIDI files by reading the notes

played on a synthesizer.

serial port
The communications port that connects one PC with another either
directly or indirectly through a modem. Programs in two computers can

communicate through their serial ports.

simulation
A computer model of a real-world object, event, place, or combination of

the three.

344 C++ Games Programming

sound clip
A binary stream that represents the recording of a voice or sound effect.The stream includes a header block that defines the sampling rate andresolution of the sound clip.

sprite
An animated character in a game.

super VGA
A video controller card, compatible with VGA, that is capable of morecolors and higher resolution than VGA.

synthesizer
A device that produces musical sounds electronically.

system clock
The hardware interrupt that occurs at appoximately 18.2 times per second.

texture mapping
Creating the image of an object's surface by covering the surface of theobject with repetitions of a single tile that contains an image of thetexture,

TGA
Targa. A bitmapped graphics file format developed by AT&T.

TIFF

Tagged Image File Format. A bitmapped graphics file format developed byAldus.

timer
A software counter that counts down from a programmed value to zero orfrom zero to the value of the timer. Timers can increment or decrement ateach click of the system clock or as a function of the processor speed.

transpose
Change the key signature of a musical composition, adjusting all the notes
appropriately.

|

GLOSSARY

VGA
Virtual Graphics Array. The video controller card used in most PCs.

video buffer

A contiguous area of memory that holds video display information.

video clip
A sequence of still frame images that can be displayed as a motion picture.
The program does not alter the sequence or position of any of the frames

while the video clip plays.

video mode
The way that the video controller displays data. The mode specifies pixel

resolution and number of colors. Modes are associated with the video

controllers. The VGA can use all the modes of earlier PC video controllers

and adds several modes of its own. Some modes are graphics modes.

Others are text modes. In graphics modes, the value of a byte of video

memory specifies the color at a pixel location. In text modes, the value of a

word of video memory specifies an ASCII value to be displayed and its
color attributes.

video page
Oneof several video buffers that the program can address. Only one video

page at a time is visible to the user. The others are hidden.

visible video page
The video page that contains the display data that the user sees.

VOC

A sound clip file format originated by Creative Labs’ Sound Blaster.

wire frame model
A computer model built of vectors that connect to represent the edges of

shapes.

345

346 C++ Games Programming

Z-order
The order of a sprite relative to the other sprites in the Z coordinate,which defines which sprites would display on top of—and, therefore, infront of —which other sprites when sprite images intersect.

1812 Overture, 45

256 color modes, 37, 103

2D coordinates, 66

32-bit, 50-51

3D effect, 68

3D maze games, 40

3D mazes, 17, 32

3D model, 20, 38, 62

3D modeled sprites, 63

3D modeling, 56
3D models, 57

A
Abrash, Michael, 14, 36
abstract base class, 152

abstraction, 4-5, 84-85

acquiring music, 48

active page, 72-73, 200

adjusting Theatrix, 143

Adventure, 14, 263

Alchemy, 54, 61, 100, 252

anagram, 12

analog, 42
analogy, 5

animation, 65, 67, 71-72, 243

ANSI,8
APL 4

Apogee, 17

application, 83

artificial intelligence, 12

ASCII, 30, 35, 89, 145, 151, 153

ascii.h, 145

Assert, 143, 155

Astrofire, 263

asynchronous, 30

axis, 67

background, 55, 71

background scenery files, 178

background scrolling, 248

baseline, 186

347

348 C++ Games Programming

bass drums, 49
BIOS,4, 29-30
bitmapped graphics, 37
bitmaps, 36
Blake Stone, 17

BLASTER, 194

Blaster Master, 253, 261

BMP, 251

Borland, 8, 26, 51
bossa nova, 50
buffer, 71

buffers, 36
BUILD, 173, 177-178
button constants, 147

BUTTONONE, 147
BUTTONTWO, 147

C
CAD, 31, 56
calibration, joystick, 32
callback, 86-87, 91, 158, 192
callback function prototypes, 88
callback function signatures, 87
camcorder, 74
camera, 59-60
CASE,185
casting, 88
CGA, 16
characters, 20
Charleston, 45
chess, 12

Chuck Yeager’s Advanced Flight Trainer,
17

class hierachies, 82
class library, 83, 112

class:

DemoDirector, 198

Director, 84, 92-93, 112

EventHandler, 158

Folder, 157

Hand, 84-86, 90-92, 96, 114, 156
Intro, 219
KeystrokeFolder, 158

KeystrokeServer, 153

Media, 163

MediaClip, 164

Menu, 222
MouseDemo, 196

MusicHand, 84, 93-94, 121, 154, 166,
216

Performer, 84, 94, 96-97, 122, 165, 226
PlanetDemo, 204

Player, 84, 97-98, 125, 166

Pond, 208
SceneDirector, 84, 98, 129, 162

SceneryDirector, 84-85, 96
ScneryDirector, 97
Skater, 211

SkaterDemo, 215
Sprite, 202
TextModeApp, 190

TextModeDirector, 191

Theatrix, 82, 131, 150

Town, 229
TownApp, 237
VideoDirector, 84, 96, 133, 160-161,
226

VocalHand, 84, 93-95, 154

Voice, 207
clipping, 245
Como, Perry, 49

INDEX 349

composing music, 47

CompuServe, 9, 49, 181, 252

configuration management, 184, 186

configuring Theatrix, 260

Conway, John, 13

coordinates, 66

copyright, 49
CPU, 33, 67, 167

Crowther, Will, 14

CT-VOICE, 78, 194

ct-voice.drv, 165

cue, 6, 85-87, 89-90

Cue Registries, 156

cue request functions, 92

cue stop functions, 92

CUELIST, 86, 88, 95, 138, 147, 156, 192,

195,201, 211

CUELIST events, 87

current_game, 150-151

cursor, 30

cursor shapes, 31, 142

CURSORLIST, 108, 141, 162, 206

cursors, 73

custom cursor, 74

custom palettes, 103

CVTPAL, 104-105
cymbals, 49

D

DAT, 42
data structures, 150

Dave's . TGA Animator, 75, 181, 254, 261

Debussy, 49
DEC, 13

DECLARE_CUELIST, 138-139, 156,
192,211

DECLARE_MOUSECURSORS, 142, 162

DEFAULT_VIDEO_MODE, 143

DemoDirector class, 198

DemoDirector::display(), 200

demos, 173

Descent, 17, 25

digital recording, 42
DIGPAK, 78, 165, 180, 256, 261

Director, 92

Director class, 84, 93, 112

director.h, 112

Director::display(), 113, 115

Director::get_next_director(), 113

Director::hide(), 113

Director::iterate_director(), 113

Director:next_director_set(), 114

Director::set_next_director(), 114

Director::stop_director(), 201

Director::take_over(), 112

directory structure, 172

directory tree, 172

documentation, 250

Doom, 17, 22, 24, 26, 32

Dr. Dobb's Journal, 36

Dracula, 64

DTA, 75, 181, 254, 261

Edison, Thomas, 41

encapsulation, 5

ENDCUELIST, 139

ENDCURSORLIST, 108, 142, 206

ENDLIST, 86
END_CURSORLIST, 162

event-driven, 28, 30

350 C++ Games Programming

EventHandlerclass, 158

EventHandler::execute_callbacks(), 160

events, 28, 83

examples, 259
EXEC, 173, 178

extensibilty, 7

F

Fastgraph, 76, 179, 255, 261-262
fatal, 155

fgdriver.exe, 183

flatbed scanner, 54
FLC, 75, 161

Flight Simulator, 16

folder, 151-152
Folder class, 157

folder.h, 157

Folder::dispatch(), 159

FORTRAN, 15

Frac, 263

frame rate, 89
freeware, 6

function
EventHandler::execute_callbacks(), 160

function Skater(), 212
function:

DemoDirector(), 199

DemoDirector:display(), 200
Director(), 112

Director::display(), 113, 115

Director::get_next_director(), 113
Director::hide(), 113

Director::iterate_director(), 113

Director::next_director_set(), 114

Director::set_next_director(), 114

Director::stop_director(), 201
Director:take_over(), 112

Folder::dispatch(), 159

Hand(), 114

Hand::get_mouseposition, 114

Hand::initialize(), 100, 115

Hand::initialize_hands(), 154
Hand::mosue_visible(), 115

Hand::mouse_cursorshape(), 115
Hand::mouse_invisible(), 115

Hand::my_director(), 116

Hand::post_message(), 116

Hand::post_netpack, 116

Hand::request_hotkey_cue(), 116

Hand::request_joystickbutton_cue),
116

Hand::request_joystickmove_cue(), 117
Hand::request_keystroke_cue(), 117

Hand::request_message_cue(), 117

Hand::request_mouseclick_cue(), 118

Hand::request_mousemove_cue(), 118

Hand::request_netpack_cue(), 118

Hand::request_timer_cue(), 118

Hand::set_director(), 119

Hand::set_hotkeys(), 119

Hand::set_mouseposition(), 119

Hand::start_director(), 119, 157

Hand::stop_director(), 119

Hand::stop_hotkey_cue(), 120
Hand::stop_joystickbutton_cue(), 120
Hand::stop_joystickmove_cue(), 120

Hand::stop_keystroke_cue(), 120

Hand::stop_message_cue(), 120

Hand::stop_mouseclick_cue(), 120

Hand::stop_mousemove_cue(), 121

Hand::stop_netpack_cue(), 121

Hand::stop_timer_cue(), 121

Intro::display(), 220
Intro::take_over(), 220

Menu), 223
Menu::display(), 223
Menu::get_next_director(), 225

Menu::on_enter(), 225
Menu::on_help(), 224
Menu::on_timer(), 239

Menu::on_up(), 224
Menultem::update(), 239

MusicHand(), 121

MusicHand::initialize(), 121

MusicHand::isconducting(), 122

MusicHand::load_score(), 122

MusicHand::music_clip_is_playing(),
122,218

MusicHand::play_music_clip(), 94,
122.217

MusicHand::stop_music_clip(), 122, 217

Performer(), 122

Performer::get_char_height(), 123

Performer::get_char_width(), 123

Performer::get_image_height(), 123

Performer::get_image_width(), 123

Performer::get_num_images(), 123

Performer::load_gfxfont(), 124

Performer::load_gfxlib(), 101, 124

Performer::set_gfxfont(), 124

Performer::set_gfxlib(), 124
Performer::show_clipped_image(), 124

Performer::show_frame(), 125, 239
Performer::show_image(), 101, 125

Performer::show_number(), 125

Performer::show_print(), 125

Player(), 125

INDEX 351

Player::appear(), 126

Player::clip(), 126

Player::disappear(), 126

Player::getheight(), 126

Player::getwidth(), 127

Player::getx(), 127

Player::gety(), 127

Player::get_imageno(), 126

Player::initialize(), 127

Player::isclipped(), 127

Player::isvisible(), 127

Player::setinterval(), 128

Player::setx(), 128

Player::setxy(), 128

Player::sety(), 128

Player::set_imageno(), 127

Player::stillframe(), 128

Player::unclip(), 128

Player::update_position(), 129

Pond), 209
Pond::on_timer(), 210

request_hotkey_cue(), 92

request_joystickbutton_cue(), 92

request_joystickmove_cue(), 92

request_keystroke_cuef(), 92

request_message_cue(}, 92

request_mouseclick_cue(}, 92

request_mousemove_cue(), 92

request_netpack_cue(), 92

request_timer_cue(), 92
SceneDirector(), 129

SceneDirector::.changeZOrder(), 211

SceneDirector:display(), 129

SceneDirector::on_escape), 129

SceneDirector::on_timer(), 130

352 C++ Games Programming

SceneryDirector(), 130

SceneryDirector::display_original _
scenery(), 130

SceneryDirector::get_next_director(),
130

SceneryDirector::refresh_display(), 131
Sheriff: Walk(), 244
Skater::update_position(), 213
Sprite(), 202
Sprite::initialize(), 203
Sprite::move_to(), 203
Stealth:initialize(), 247
Stealth::OnMove(), 247
stop_hotkey_cue(), 92
stop_joystickbutton_cue(), 92
stop_joystickmove_cue(), 92
stop_keystroke_cue(), 92
stop_message_cue(), 92

stop_mouseclick_cue(), 92
stop_mousemove_cue(), 92
stop_netpack_cue(), 92

stop_timer_cue(), 92
Theatrix(), 131

Theatrix::enable_joystick(), 131, 154

Theatrix::enable_netpacks(), 131

Theatrix::get_joystick_extremes(), 117
Theatrix:go(), 132

Theatrix::joystick_extremes| 4132
Theatrix::set_xms(), 132

Theatrix::use_commport(), 132

Theatrix::use_video_mode(), 133
Town(), 229
Town::display, 232
Town::hide, 232
Town::on_escape(), 233
Town::on_timer, 232

VideoDirector(), 133

VideoDirector::active_page(), 133

VideoDirector::fill_background_buffer(),
133

VideoDirector::flush_patch(), 133

VideoDirector:init_video(), 134, 200
VideoDirector::restore_page(), 134

VideoDirector::restore_patch(), 134

VideoDirector::set_synch_patch(), 134
VideoDirector::show_pcx(), 134, 220
VideoDirector::show_video(), 135

VideoDirector::stop_video(), 135

VideoDirector::swap_video_pages(), 135

VideoDirector::synch_patch(), 135

VideoDirector::synch_patches(), 135

VideoDirector::synch_video_pages(),
136

VideoDirector::video_playing(), 136

VideoDirector::visual_page(), 136

VocalHand(), 136

VocalHand::get_num_clips(), 136

VocalHand::get_sound_clip_length(),
137

VocalHand::load_sfxlib(), 95, 102, 137

VocalHand::play_sound_clip(), 95, 102,
137

VocalHand::set_sfxlib(), 137
VocalHand::sound_clip_is_playing(), 95,
137

VocalHand::stop_sound_clip(), 138

G
game controllers, 29
game data files, 178

game executable files, 183

game makefile, 182

INDEX 353

game source code, 177

games, 263

GENPAL, 103-105

GetMessageMap, 157

GETPAL, 103-104

GFX, 96, 100-101, 122, 167-168, 179-180,
199, 202, 212, 239

GFXMAKE, 100, 104, 167, 179

GFXSHOW, 101

GI Joe, 64

global, 150

GMICE, 74, 106-107, 115

GRAPHDEV, 181, 252

Gruber, Ted, 255

H

Han Solo, 64
Hand, 86, 90-92
Hand class, 84-85, 96, 114, 156

hand.h, 114, 138, 156

Hand::get_mouseposition, 114

Hand::initialize(), 115

Hand::initialize_hands(), 154, 157

Hand::mouse_cursorshape(), 115

Hand::mouse_invisible(), 115

Hand::mouse_visible(), 115

Hand::my_director(), 116

Hand::post_message(), 116

Hand::post_netpack, 116

Hand::request_hotkey_cue(), 116

Hand::request_joystickbutton_cue(), 116

Hand::request_joystickmove_cue(), 117

Hand:request_keystroke_cue(), 117

Hand::request_message_cue(), 117

Hand::request_mouseclick_cuef), 118

Hand::request_mousemove_cue(}, 118

Hand::request_netpack_cue(), 118

Hand::request_timer_cue(), 118

Hand::set_director(), 119

Hand::set_hotkeys(), 119

Hand::set_mouseposition(), 119

Hand::start_director(), 119, 157

Hand::stop_director(), 119

Hand::stop_hotkey_cue(), 120

Hand::stop_joystickbutton_cue(), 120

Hand::stop_joystickmove_cue(), 120

Hand::stop_keystroke_cue(}, 120

Hand::stop_message_cue(), 120

Hand::stop_mouseclick_cue(}, 120

Hand::stop_mousemove_cue(), 121

Hand::stop_netpack_cue(), 121

Hand::stop_timer_cue(), 121

handler.h, 158

hardware, 28

Hardware Enable, 154

header files, 177

help screens, 219
hidden page, 71

hierarchy, 84
hot spot, 73, 106-107

HOTKEY, 87, 89, 139

IBM, 12, 16

idle, 112

Image Alchemy, 100, 181, 252, 262

Installing Theatrix, 259

Internet, 9

interrupts, 155

Intro class, 219

354 C++ Games Programming

intro screens, 219
Intro::display(), 220
Intro::take_over(), 220
IRQ, 165

J
jeep, 57
joystick, 20, 23, 29, 31, 34, 191, 195, 246
joystick calibration, 32
joystick flutter, 33
JOYSTICKBUTTON, 87, 91, 139, 147
JOYSTICKMOVE, 87, 91, 139

K

Kahn, Philippe, 26
Kapur, Mitch, 26
Ken and Barbie, 64
keyboard, 23, 29
keyboard interrupt, 30
keyboard mode, 112

keyboard scan codes, 145
keyfold.h, 157

keys, multiple, 89
KEYSTROKE, 86-88, 140

keystroke codes, 145

KeystrokeFolder class, 158
keystrokes, 6, 28

keystrokes, multiple, 29
KeystrokeServerclass, 153

KeystrokeServer::check, 153
Kretzschner, Lutz, 251

L

LEFTMOUSEBUTTON, 118, 147
Leisure Suit Larry, 18, 24

levels of abstraction, 5

libraries, 179, 255
library source code, 178
Life, 264
life, game of, 13

list of directors, 150
look and feel, 26
look_at, 60
Lotus, 26

M

Macintosh, 18

macros, 138

Maddox, Gary, 253
main, 191

main function, 204, 216
make.cfg, 173-177, 260
Manilow, Barry, 42
Marble Fighter, 85
Marble Fighter demo, 219, 221
Marble Fighter options, 22.7

Mason, David K., 75, 254
master palette, 105

MAXDIRECTORS, 144

MAXFXLIBS, 144

MAXHANDS, 144

MAXMESSAGE, 144

MAXNETPACK, 144
McCarthy, John, 12
Media class, 163

media.h, 163

MediaClip class, 164

memory, video, 35
Menu class, 222
Menu::display(), 223

INDEX 355

Menu::get_next_director(), 225

Menu::on_enter(), 225
Menu::on_help(), 224
Menu::on_timer(), 239

Menu::on_up(), 224
Menultem::update(), 239

menus, 21, 221

merging images, 108

MESSAGE, 87, 90, 140

message posting, 90, 116

message servers, 151

message-based, 28, 30

messages, 6, 28

metaphor, 5-6, 82-83

Microsoft, 16

MID],8, 21, 28, 44-49, 78-79, 93,
166-167, 169, 179, 217, 254

MIDI sequencer, 254

MIDIFORM, 79, 169, 181

MIDPAK, 50, 78-79, 167, 169, 180, 217,
256, 261

midpak.ad, 180

midpak.adv, 180

midpak.com, 180

MIT, 12-14

mode-X, 8, 30, 36-37, 39, 71, 101, 161,
246

modeled sprites, 63

modeler, 251

modeling, 56
modem, 23, 34, 254, 262

modem.bat, 254
modes, video, 35
Moray, 56-57, 59-60, 62-63, 251, 262

motion, 65

mouse, 20, 23, 30, 85

mouse cursors, 73, 105, 142

mouse demo, 196

mouse events, 6, 197

MOUSECLICK,87, 90, 140, 147

MOUSECURSOR, 142

MouseDemo class, 196

MOUSEMOVE, 87, 90, 140

MOUSE_CURSOR, 162, 197

MS-DOS, 2, 4, 26, 29, 35, 51, 56, 105,
195, 251

MT, 79, 254, 262

multiple keys, 89

multiple keystrokes, 29

multiple players, 23, 34

multiple sprite animation, 97

multiple sprites, 243

multiple-players, 227

music, 6, 20-21, 44, 78, 232

music clip, 94
music clips, 217
music.h, 121, 166

MusicHand class, 84, 93-94, 121, 154,
166, 216

MusicHand::initialize(), 121

MusicHand::isconducting(), 122

MusicHand::load_score(), 122

MusicHand::music_clip_is_playing(), 122,
218
MusicHand::play_music_clip(), 94, 122,
217
MusicHand::stop_music_clip(), 122, 217

Myst, 18, 24, 26

|
NeoPaint, 54, 62, 66, 69-70, 104, 251, 262

NETPACK, 87, 91, 140

356 C++ Games Programming

network, 23, 185, 253
network packets, 28, 91

network rendering, 184

networks, 23

new, 112

NUMPATCHES, 144

o
options, 22

P

packets, network, 91

page-flipping, 203
paint program, 251

palette, 37-38, 70

palette correction, 62, 76
palettefile, 104

palette generation, 103

palette management, 103

parable, 5

paradigm, 82
PASTE, 108

patch, 161

perform.h, 122, 165

performance, 6, 82
Performer class, 84, 94, 96-97, 122, 165,
226

Performer::get_char_height(), 123

Performer::get_char_width(), 123

Performer::get_image_height(), 123
Performer::get_image width|), 123

Performer::get_num_images(), 123

Performer::load_gfxfont(), 124
Performer::load_gfxlib(), 101, 124

Performer::set_gfxfont(), 124

Performer::set_gfxlib(), 124
Performer::show_clipped_image(), 124

Performer::show_frame(), 125, 239
Performer::show_image(), 101, 125

Performer::show_number(), 125

Performer::show_print(), 125

perspective, 68-69
photographed sprites, 64
piano, 46
pixel, 36
Planet, 85

Planet demo, 198

planet.pcx, 198, 200
-PlanetDemo class, 204
Player class, 84, 97-98, 125, 166

player.h, 125, 166

Player::appear(), 126

Player:clip(), 126

Player::disappear(), 126

Player::getheight(), 126

Player::getwidth(), 127

Player:getx(), 127

Player::gety(), 127

Player::get_imageno(), 126

Player::initialize(), 127

Player:isclipped(), 127

Player::isvisible(), 127

Player::setinterval(), 128

Player::setx(), 128

Player::setxy(), 128

Player::sety(), 128

Player::set_imageno(), 127

Player:stillframe(), 128

Player::unclip(), 128

Player::update_position(), 129

INDEX 357

players, multiple, 34, 227

playing sound clips, 207

Pond class, 208
Pond::on_timer(), 210

portion, 109

POV, 9

POV-ray, 2, 9, 56-57, 59-61, 70, 181, 252,
260

povnet, 184, 253, 263

privacy, 39
protected mode, 50

prototypes, 88

Psycho, 44

Putt-Putt, 18

Q
quantize, 50

Quattro Pro, 26

Radio Shack, 12

Ragtime, 45

RAM,35, 43

Ratcliff, John W., 256

ray casting, 17, 40

ray tracing, 18, 20, 37-38, 59

real models, 63

realism, 39
recording music, 49

recording sound, 41
4

_
recording sound effects, 77

reference, 111

REGION, 109

Relentless, 264

requesting cues, 91

request_hotkey_cue(}, 92
request_joystickbutton_cue(), 92

request_joystickmove_cue(), 92

request_keystroke_cue(), 92

request_message_cue(), 92

request_mouseclick_cuef(), 92

request_mousemove_cue(), 92

request_netpack_cue(), 92

request_timer_cue(), 92

resolution, 36, 43

restrictions, 8

RIGHTMOUSEBUTTON, 118, 147

rights, 39
rock, 50
RTT, 8, 51

run length encoding, 37

Russel, Steve, 13

S
sample games, 259

sampling, 43

sampling rate, 43

scan code, 30

scan codes, 89, 145-146

scancode.h, 145

scanning, 54
scenedir.h, 129

SceneDirectorclass, 84, 98, 129, 162

SceneDirector::changeZOrder(), 211

SceneDirector::display(), 129

SceneDirector::on_escape(), 129

SceneDirector::on_timer(), 130
scenery, 20, 54:55, 71 +scenery.h, 130, 141-142, 162

SceneryDirector, 85, 130

358 C++ Games Programming

SceneryDirector class, 84, 96-97
SceneryDirector::display_original _scenery(), 130

SceneryDirector::get_next_director(), 130
SceneryDirector::refresh_display(), 131

Scientific American, 13

score, 23
scrolling, 248

sequencer, 47, 254
serial port, 29, 34
server, 152

server.h, 152

Server::shutdown, 152

Server::startup, 152

servers, 151

settings.h, 143

setup, 180

sex and violence, 24
SFX, 77, 94-96, 102, 168-169, 179-180,

182, 202, 207, 212
SFXMAKE, 102

SFXPLAY, 102

shareware, 6, 250
Sheriff: Walk(), 244
shootout, 55, 85

Shootout demo, 242
SHOWPCX, 101
shutdown, 152-153, 155
simulator, 16

sk.bat, 183

Skater, 85
Skater class, 211
Skater demo, 62, 67, 208
Skater::update_position(), 213

SkaterDemo class, 215
SkyScrap, 85

SkyScrap demo, 245
sound, 21, 41

sound blaster, 43

sound clips, 206-207, 253, 256
sound effects, 77, 101, 179, 232
SOUND environment variable, 165
soundrv.com, 180

source code, 8, 173, 258
Spacewar, 13-14
sphere.pcx, 198

sprite, 66-68, 70, 72-73
Sprite class, 202
spritefiles, 179

Sprite::initialize(), 203
Sprite::move_to(), 203
sprites, 18-19, 62-63
sprites, multiple, 243
stagehand, 82
standard template library, 112
standard.h, 147

standards, 22, 25

Stanford AI Laboratory, 14

Starship Enterprise, 17, 64
startup, 152-153

startup screen, 193

static, 151

Stealth::initialize(), 247
Stealth::OnMove(), 247
StopDirector, 113

stoping cues, 91

stopping the Director, 93
stopping the game, 233
stop_hotkey_cue(}, 92
stop_joystickbutton_cue(}, 92
stop_joystickmove_cue(), 92

INDEX 359

stop_keystroke_cue(), 92
stop_message_cue(), 92
stop_mouseclick_cue(), 92
stop_mousemove_cue(), 92
stop_netpack_cue(), 92
stop_timer_cue(), 92

string beans, 42
subdirectory structure, 172

Super Mario Brothers, 19

super VGA,35
SVGA,4
swing, 50
synthesizer, 46

System Abort, 155

System Shutdown, 155

System Startup, 154

T

td.tr, 183

tdconfig.td, 183

terminating the music driver, 218
terminology, 82

TextMode, 85
Textmode demo, 190

TextModeApp class, 190

TextModeDirector class, 191

texture mapping, 40
TGA, 59, 61, 181

theatricial production, 82

Theatris, 85

Theatris demo, 237
Theatris menu, 238
Theatris pieces, 241

Theatris pit, 240
Theatrix class, 82, 131, 150

Theatrix installation, 259
Theatrix toolkit, 6

Theatrix Utilities, 259

Theatrix, configuration, 260

theatrix.h, 131, 155

Theatrix startup screen, 193

Theatrix::enable_joystick(), 131, 154

Theatrix::enable_netpacks(), 131

Theatrix::get_joystick_extremes(), 117

Theatrix::go(), 132

Theatrix::;joystick_extremes(), 132

Theatrix::set_xms(), 132

Theatrix::use_commport(), 132

Theatrix::use_video_mode(), 133

this, 151

Tibbets, Guy, 11-12

tic-tac-toe, 93, 205
TicTacToe, 85

TIFF, 251

TIMER, 86-87, 89, 141, 195, 201

timer events, 6

timers cues, 89
tools, 250

town, 59, 85, 93

Town class, 229
Town subclasses, 233
Town::display, 232
Town::hide, 232
Town::on_escape(), 233
Town::on_timer, 232

TownApp class, 237

transparency, 66, 70

two-player, 34
typedef, 158

typeid, 154

360 C++ Games Programming

U

utilities, 180

utility source code, 178

Vv

VCR, 21, 64, 74

VGA,8, 35, 38-39, 103, 246
viddir.h, 133, 160

Video Blaster,
video clips, 20

74

-21, 38, 74, 76, 235
video memory, 35
VideoDirector
226

VideoDirector
VideoDirector

133

VideoDirector
VideoDirector::
VideoDirector::
VideoDirector::
VideoDirector:
VideoDirector::
VideoDirector::
VideoDirector::
VideoDirector::
VideoDirector::
VideoDirector::
VideoDirector::
VideoDirector::

class, 84, 96, 133, 160-161,

::active_page(), 133

+:fill_background_buffer(),

::flush_patch(), 133

init_video(), 134, 200
restore_page(), 134

restore_patch(), 134

:set_synch_patch(), 134

show_pcx(), 134, 220
show_video(), 135

stop_video(), 135

swap_video_pages(), 135

synch_patch(), 135

synch_patches(), 135

synch_video_pages(), 136

video_playing(), 136

VideoDirector::visual_page(), 136
visible page, 36, 71

VOC, 43, 45,77, 94, 101-102, 179

vocal .h, 136, 164

VocalHand, 136

VocalHand class, 84, 93-95, 154

VocalHand::get_num_clips(), 136

VocalHand::get_sound_clip_length(), 137

VocalHand::load_sfxlib(), 95, 102, 137

VocalHand::play_sound_clip(), 95, 102,
137

VocalHand::set_sfxlib(), 137 |

VocalHand::sound_clip_is_playing(), 95,
137

VocalHand::stop_sound_clip(), 138

Voice class, 207

w
William Tell Overture, 44
Win32, 51

Windows, 18, 26, 28, 33
Wolfenstein, 17

wood blocks, 49
Woods, Donald, 14

X

XMI, 79, 93-94, 167, 169, 179, 182, 217
XMS, 154, 163

XVGA,4, 36

¥
Young, Chris, 252

Z

Z-order, 4, 67-69, 72, 98, 163, 208, 210

About the CD-ROM
The contents of the CD-ROM are briefly outlined here.
See Appendix A for descriptions and installation details.

The Theatrix library and demos is in the \thx directory.
Blaster Master is located in the \bmaster directory.
Dave’s Targa Animator (DTA) is located in the \DTA directory.
Both DIGpack and MIDpack are in the \DIGMID directory.
The version of Fastgraph Light is located in the Mgl directory.
Image Alchemy is located in the \alchemy directory.
The modem batch file is located in the \modem directory.
Moray resides in the \moray32 directoryYou'll find the Midi Sequencing
software (and source code) in the \MT directory.
Neopaint version 3.1 is located in the \neopaint directory.
The \povnet directory contains the Povnet utility.
The Adventure gameis on the CD-ROM in the \extras\advent subdirectory.
Astrofire is located in the \extras\astrof directory.
Copy the files from the \extras\frac directory to install.
Conway’s game of Life is on the CD-ROM in the \extras\life subdirectory.
Copy the \extras\relent directory.

A FTETTEN C++ Games Programming includes
0 .¢ everything programmers need to enhance

their C++ skills and develop blockbuster
| games. This must-have reference includes:

0 instructions for writing your own games;|

Theatrix, a unique and a powerful C++ class= library game engine that comes on the CD
complete with C++ source code; four full-featured games complete with
source code; a game builder's kit, utility programs, and shareware games.Use Theatrix and the tools and instructions in this book to develop yourown PC game programs with ray-traced scenery and sprites, multi-player
modes, fast animation of multiple sprites, sound effects, video clips, and
music. The demo games provide step-by-step guidance on how to
implement each of these features.

Cc3 AEF ER TRS
i POR ANSL WS L EC RARAELYJ

The Theatrix offerings on the CD-ROM include:

® complete C++ source code, reusable,
free of royalties

® fast VGA sprite support, including mode X
support for sound effects and. MIDI music
serial port/modem support for head-to-head
action

® custom and shareware utilities for bitmap, sprite,
sound, and palette management

® support for Myst-like and action arcade games
® video clip .FLC file support

Ema Ee You will be amazed at the degree of encapsulation
that Theatrix achieves, permitting you to develop
complex and impressive games with a minimum
of user-written source code.

AL STEVENS has been writing the C Programming Column in Dr. Dobb's Journal, the number one
programmer's magazine, since 1988. He is the author of more than a dozen best-selling titles for
MIS:PRESS, including teach yourself... C++(1995), Al Stevens Teaches C (1994), and C++ Database
Development (1994). Stan TruiiLLoO specializes in interactive graphics and C++, but has worked with
parallel processing, neural networks, and application development. ;

L

US $39.95
ISBN 1-55851-449-x CAN $54.00 §

Be
Intermediate /Advanced

9 "781558"5 PC

