(++ Games Programming

CD Includes Theatrix, a powerful C++ library games engine
Four full-featured games, complete with source code

Complete game-builder’s tool kit

M&T =

[#Z AL STEVENS AND STAN TRUJILLOD,

C++ Games
Programming

Al Stevens
Stan Trujillo

M&T =

= (=)
=
=}
E
(]

M&T =

LE

MA&T Books

A Division of MIS:Press, Inc.

A Subsidiary of Henry Holt and Company, Inc.
115 West 18th Street

New York, New York 10011

© 1995 by M&T Books
Printed in the United States of America

All rights reserved. No part of this book may be reproduced or transmitted in any form
or by any means, electronic or mechanical, including photocopying, recording, or by
any information storage and retrieval system, without prior written permission from
the Publisher. Contact the Publisher for information on foreign rights.

Limits of Liability and Disclaimer of Warranty

The Author and Publisher of this book have used their best efforts in preparing the
book and the programs contained in it. These efforts include the development, research,
and testing of the theories and programs to determine their effectiveness.

The Author and Publisher make no warranty of any kind, expressed or implied, with
regard to these programs or the documentation contained in this book. The Author
and Publisher shall not be liable in any event for incidental or consequential damages
in connection with, or arising out of, the furnishing, performance, or use of these pro-
grams.

All products, names and services are trademarks or registered trademarks of their respec-
tive companies.

Library of Congress Cataloging-in-Publication Data

Stevens, Al,
C++ games programming / Al Stevens, Stan Trujillo.
p. cm.
ISBN 1-55851-449-X

1. Computer games—Programming. 2. C++ (Computer program language)
I. Trujillo, Stan. II. Title

QA76.76.C672S74 1995

794.8/15265 20 95-30653
CIP

97 96 95 94 4 3 2 1

Editor-in-Chief: Paul Farrell Managing Editor: Cary Sullivan
Editor: Debra Williams Cauley Copy Editor: Betsy Hardinger
Production Editor: Anthony Washington

Dedication

To my friend and father, Art Trujillo
S. L

To Woody
A.S.

Acknowledgments

Thanks to Ed Trujillo for introducing the authors.

We would like to thank Patrick Lujan for supplying the Sky Scrap demo,
and finding bugs.

We would like to thank the following authors for letting us use and
distribute their software:

Gary Maddox—Blaster Master

David Mason—Dave’s Targa Animator (DTA)

John Ratcliff—DIGpack and MIDpack

Diana Gruber of Ted Gruber Software—Fastgraph Light

Paul H. Yoshimune of Handmade Software, Inc.—Image alchemy
Lutz Kretzschner of SoftTronics—Moray

Jim Conger—Midi Sequencer

Neosoft Corporation Neopaint version 3.1

Owen Thomas—Astrofire

Table of
Contents

CHAPTER I: Introductioncccccevunnns e |
TRHEACLIR ooy om0 & ommiro o e o558 158G BRS 8 W48 GG Bals CH MU g0 ms drgiwiw s oo 2
ODBJECHIVES .+ttt vvvvieeeeeee ettt eannaanness et 3

Details: What to Know, WhattoHide 4
Levels of ADStractionoiueerern et 4
Encapsulationc.ccciiiiiiiiiiiiiiiiiii i 5
The Theatrix Metaphorccuiiiiuiinneenenneeeeneeenns 5
PerfOrMAanCe .. . oottt et e et et e e 6
A Comprehensive Toolkitccoiiiiiiiiiiiiiiiin, 6
ExtensibiliEy &, v v einmes s samma s muvy sHony vy s 7
WhoO ATe YOUZ ..t ittt ettt et a e in it 7
What do You Need?ttt 8
Your Rights and Some Restrictionscovvveeeiieiiiiiiaan... 8
Getting Helpovvuviervntiiootinisvsaasiansescnsssansssssss 9

The Organization of ThisBookccovviiiiiiiiiiiinn, 9

viii C++ Games Programming

CHAPTER 2: GameTheorycovvivvvnvennennnn..ll

Early Computer GaIES: o o i i s s o h e v b e in 12
- P T o A T M R 12
BROBCEWRE i\ oo i in s i o S R T s Tt e et T s b s e 13
E R I R W S ONe EPH DY 5 e A OIS Sl Sy 13
BT o, b i 0 4 8. B ol At S i i 3 5 < 14

ORI NOIREY GBS i et m s b e bd v a s s on 5 h s s ains 15
BRI o i e e s B s s 16
LB STIED Ly s SRS NS R L ST B T Y 17
Static ERsplayes MySE . om0 i i i S e e E i s e 18
SpEEEs and BackarGunas . Fi T b v et e s v e e s v s 18

b oo s | VT U RN S| S AR S 1 (et S 19
SRR "0 o s s, S s 10 1t el R s Bl e b s T 8 e o 20
EBREEIE s o8 st S m ol B e e e e w0 B 5 4 e, i o 20
NICBOAIBR .0 0. o ol o Tty o s Tl e nrie i v s e b B o 8 21
BORBLGRl NINRIE:. 52 0 Vs d v ke s L a s B E o 21
IR - bt s o e s s B 5 2 Bothetn v e i’ & B b AR 5 21
BIDIMBIEIE .y b, e 5 ot it RN ¢ gL bk w 5008 M e ot 0 b ot 5 22
Saving Caries in PrOGress cveiissss ivi e dinatsnns o 22
DI ORI PV .o s v B s s 5 Rty i b S e B s s 23
KECDIE SCOTE L is s st § < 5aons' 5 51 5t & mnisosh i o Sl v AR o Il 23

The Question of Sex and VIolence hu e snsvios s svad o 24

What about Standarda? .., . 0.0 o eiinlhvans i masek s e e 25

CHAPTER 3: PC GameTechnologyc.cc0vuu....27

Why Learn about Hardware?covveeerennnsennnnnneenns 28
Event-Driven, Message-Based Programming 28
B OBIIOIIEE . v oo s wreit s P R w bt s wa s e B 29
o SR M PORRE SRP LSRG 1 LIRS O L 29
DDRRE vty By ot 5 b K bk T B R o 8 30

TORBRIONE i on i s i v i T i o e B ey o s B B e e 5 5 31

Table of Contents ix

TS 1 200} T R R 34
VEAEO oottt e et et e e 35
VAdeo MEIIOTY & csvonsie sssas shmmenmans enoss®slabsansnmnessd 35
VAIdEO MOAES v ot ettt et et 35
Video Page Bufferso 36
Bitmapped Graphics Files 36
THE Palette . oo o v oot ettt e e e e 37
GIAPHECS ..t vvvee vt it i 38
SOUNA ot ittt et et i e e 41
What Is SOUNA? .« o\ vttt et 41
RecordingSoundcooiviiiinnnrniiiiiiiieaeees 41
Digital ReCOTdingvvovrinvennenneiumnrenineneenees 42
SAMPLNE ..\ttt e e 43
VOC FIlES . ittt ettt ettt e e i e 43
IVITSIC & v o w0 imvw vt e wommims e Gk M55 67065 816 15 W80 8 @ is i wr s wioiw s win om0 b8 WS s 8 WM B3 44
Setting the MOOdvvvnntt it 44
1Y, 11) A R 45
Composing MUSICovvnniiiiiierineerennnens 47
Acquiring MUSIC ... vvvvvvt 48
ReCOrding MUSIC ..o uvvvtn ettt 49
Adding the Musical Score tothe Gameoovnn 50
32 Bits and Protected Modeooiiii e 50

CHAPTER 4: Game-Building Strategies53

SCEIICTY 55 «inss s 9w s s mas yummeennms sndsds@uus sREEEqmENy g mwoel 54
SCANMITIZ .« . v v vvevrvenronorananeossonsetnosanosnssonsesnsss 54
Painting with NeoPaintooeiiiiiiiineen, 55
3-D Modeling with MORAY 56
Ray Tracing with POV-Ray 59
Converting Bitmapped Graphics Files with Alchemy 61

SPHLES . ..ovvsissamnsmmbn nuaminsins vl tesbbisnsbienssonsd 62

X C++ Games Programming

FROBRR RO oo e e e 62
GETMRPIRE RETIIR . il o e e s e s B 63
SR RO ORIEIN . i i o i s oy Sen I 63
s - O Tl A R AR D Ol e Tl e LR LB S 65
Motion. One Reame ata THNE i vl e o 65
Plotting the Two-Dimensional Coordinates 66
BB RIS . i i e e el e SR e 67
TR e s LR e T e N 67
BRI RN i i e e L et L 68
The Transparent Regioms of d Sprite |l oo v iia o i, 70
How Anitnation Works i Theatrix ., .o i iiivmnniitini s 71
st T S A S b Ak ROt S RN e e L RN 73
Lan o R s DR LIRS R R L e N e 74
Buating Video Chips with BYTR .. i 00 s i s i i 75
Playing Videa Clips with Pastgraph (.00, 0. L i i 76
PO EINHION vl e e e are e eg 76
e T IR R T A Tl 77
Recoplg Samd Bifeets . .0 il e i i e 77
Playback with CT-VOICE 0ot DIGPAR .. vvsivvnvinssiniviis 78
ook PG R SNBECE R P e RIS S S TR 78
Recopding Mugic with MIT 0. oiiiiinoe cignams ol syl o ot 79
Playing Back Music with MIDPAR i b nidi sl 79

CHAPTER 5: Theatrix, A C++ Class L SVOS S e BT |

THERLRER MIMRIPREY .. . e e 82
THeairts Cahn Mevivoliied o i s st b 82
HE s Ba g T G e R (S S S L T 82
Ine Theatix Clasgs Libtey. .. .00 i v 83
g3 P R At R CE GRS EE e 85
HERRRIIST able o e e e 86

Table of Contents Xxi

Level 1: Directorsand Hands 92
The DirectoriClassomus samms sannsisannisvnssmmas somns cona 93
Stopping the Directort 93

Level 2: MusicHand and VocalHand 93
The MusicHand Class s« csmasmmsy sums st assmsbas smaas ¢ 5mnes 93
The VocalHand Classcoviiriininnrnenenenenenenennns 94

Level 3: Performers and VideoDirectorsccoveunon.. 96
The Performer Classottt 96
The VideoDirector Class ws: «mss svwims smsme e s smmss s o ssmns 96

Level 4: SceneryDIr€Ctorsvuvunen et 96
The SceneryDirector Classovuiiniiiiiiinenn. 96

Level 5: Players:and SCENEDATECEOTS: «s v v v s o bss ¢ sin e smmun s 97

CHAPTER 6: Theatrix User’s Guide i B4 vy 99

Managing Graphics File Libraries oo 100
GEXMAKE. (55055 5005 505508 6005846008 §7%5 5085878 8808 80 ey s o s o 100
GEXSHOW. .:m05 comss sasis simsme o006 e swmaes 05 s s e e s 66 101
SHOWRPECX, .o viveieiminie omios siimnes o 5o s 515 85068056 § 655 4 @8 Bop i B 101

Managing Sound Effects Libraries 101
SEXMNIAKE: ;om0 5 005 s mons 60568 &5 5 0 0 0§65 86 0 0 69§ o 6808 %8 0 102
SEXPLAY . oocminscisoniafms iw@ns imesl i@ mas soee s sss 6 mes 102

Palatte Management Utilitieso 103
GE T PAL .o 104
CVTPAL: cis s wvsiimoimans s@ass s@mms sGmas s@me swmms semws ot 104
GENPAL oins simns samms wuns s Smats smmee 6 ems asess o 105

Making Mouse CUISOIS ... vuvt vttt et 105
GMICE .. e 106

Miscellaneous TEHEIES o, cowwe s smes o pmsnsionevsusms dipsns s mens s 108
PASTE . 00t oot Sowsmtio pos coom vie 8 3 18503005 W61 505 0§ BB MES NI M s M WS 2. 108

REGION ' ‘oriss 555 sl 50v'g St b i e ca 555 » ot o 8 n s o 5356 616 6 8 301 50 109

xii C++ Games Programming

CHAPTER 7: Theatrix ReferenceManual0111

ClassLADIAYY REIETONECE |55 i v sueidh it oiirs shoc i vcosis e 5 o e 6 ool o o 112
DIECtOr (IEECEORN] - w5 vime v sw w5 shebh s ot b 5 s rickionts i o 112

& T 905 T B M SO, RN O L Mo A P 114
MusicHdnd: (ASIEH) i w5 a e 5t b v o e i s i ih it 121
Perormer (PerOr Rl . . o o e cvin o os iia o sl w7 o 6 Bl bn s e 122
PIaSCEIBIGTRERY o5 s o iipabs 3o i HAPUS e o o3 om0 i 125
ScopeERsector [BoenediB). ..« iviwsnviv iy iiesiin bin ha e vis s A 129
SceneryDirector (scenery.h) ... i e e 130
THEROHR (HBatrit B) .\ s i i o b o rhihh A 50 s 6 Shdr s s ou 131
VideoBirector (VidGithy. .l i s b b i i s s s o 133
Mol R Vool o v s 8 0 R L S TS, e 136

A ABTOS N Ll 5075 5 65 hys 56 ontis e o v 685 oo R ok o el o oot e o s 3 e oo o 138
The CUELIST (handih] oo oo, cle s imae s don o 138
The CURSORLIST (scenery.h] 1. ...t invis oo ain ol 141
Mouse Cursor Shapes (scenery.h)cou.e. 142
ARSert [debug R ., i s e b e e e e s e 143
Adjusting Theatrix (settings.h) 143
DEFAULT VIDEO:MODIE iy s on il vy s m ae s 5 i e Lt 143
MAXBIRECTORS . 5 G ria i st die st biabhe oas o e o wia e 3l s 0 144
MARERTIBSE - <. i o wve i e s s oo iomie 3 slatih i kool o oid's ettt o el oo e 144
MAXHANIS [, ¢ oo s 05 50 i st s wliis saiers 5 e sve s s bne 4 144
NEAXMESSAGE: . in s o0 st aiare si 5 5 wbrs s ool s Wiie o s s b b ook il « 144
MAXNETPACK | i, o e e et 538 S tn conaiidt o 58 i 028 gt S o o 5 v o 144
INUMBRTCHES - . .0 s om s shoiars sominls 55 brs o s s o805 nmb s 144
Keyboard ASCII Codes (asciih)ccoviiiiiiiiiinininn.s, 145
Keyboard Scan Codes (scancode.h)ovviiiniiinininninnnnn 145
Controller Button Symbols (standard.h) 147
CHAPTER 8: Theatrix Technical Specifications 149

Classes and Data StIUCLULESo oot vin s tee e eenesnennssanesons, 150

Table of Contents xiii

Theatrix 150
FAATIAS " - o i omels i ms o s 5050508 5 00505 550 46 06150 5 0 6 6) 0 B 156
1554 (='e1 ¢ o) ¢ SN SNEAEIS FE P ST PP J AL PP B A 157
More Handsottt 163
File FOrmMatsottt e e 167
Sceneryi PCX o vuns camas qomas ¢ e 8ios an s @ Mibs sommessmms, 167
Sprites: GEX .. . e 167
Sound Effects: SFX i 168
INISICE XIVIE s 5 v 5 6 600573 06 0 0 B 654 0 660 05 58) 050 169
CHAPTER 9: Development Environment A71
The Game Developer’s Subdirectory Structure 172
SoUTCE COAE . ittt e 173
MAKRECEG, i o506 605568 0 80i o6 5008 505555 65 510 000 5 00 B o 6 9000 55 9 505 63 173
GameSource Codecviiiiiiiii it i 177
Header Filest e e 177
Libtaty SOUFCE COUE 1 uvswwaessmus smuns somss s@mws iemus umes e 178
Utility Programs Source Code . i isubivsomss simemssssanmossnss o 178
Game DataFilesttt e 178
Background Scenery Files il 178
Sprite IMAGEFIIES : ciowne smiinis vwms s smms s 5o ms cmesrs sdmsesmmnue o 179
SOUNA EHECES ..o voemne o mmnomrinmmnmnis o dls a5 wmhs s amas.ommns s 6 179
MIDIMusic FIlest 179
LiDrariesovi ittt 179
DIGPAK/MIDPAR DYIVEIS: < ssis simsims cwws ¢ swmnsesss 6w 5w 180
Utilities and TO0lS. * ...v.ovi smnis coiims sEass samhs 25 # o s 45550 B85 180
Theatrix Utilitiesttt e 180
POVERAY sroinumosanms smmenemams slmms s s o ius o mle ayn s oo g oa 181
IMage AICHEIIY oo s ue o5 5 5o s w0555 Sogt 606 e s 815 s i s 06 it 3w 1 181
DA v v o im0 oomiion it o e s o8 o aioc 55 Bl e o7 4 06 W08 008 5, & 038 090 0 470 % 38 181

xiv C++ Games Programming

Game MAKEFILE .. s o5 o 56 65 050 000 s, 55545 w00 5058 10 8 68 5 5s 00 a0 sh ol e o 182
Game Executable FIles ivvreintiimninvoninnessonsioneiness 183
NetWOrK BEAAETING . . vvvivie s v s i aes o s asve s ssisie s as swidsbm is alas o' 184
Configuration Managementc.oouiiiiinneeneennn.. 184
THE. OBIECEIVE " | & wresiiri s v 50 ors 56wk sk sld sl 0o e s el n 185
TREINEEWOIK 5 1 o u i b vk broe 00 e ede sl siilines o w2 oo 0§ #9080t 3 185
The Configuration Managercoieeeeunnn... 186
TR BANBIING 1 5o 5i el vsn 6 il i 5. 5 0505, 8 o0 B bR S T A T a i s 186
DAARERE BRI ' o 5 b P o o8 6 B e 458 8 5 o5 ot I P 187
CHAPTER 10: Example Game Programs N L
MR £ yov o s S0 TN w0l SV i L) S dned i B 8 190
TRETERUMOUSABD TIARE % o s vvs o s mimsth il aes 50 4 b o st 190
The Tatn FUNCHIOn = o £ o6 60) o e et da, o i e s o oow ST 191
The TextModeDirector Class .y ...v v, b s e sisisin s sii e els s dah o s 191
THE BRIV BOTERIL v oo v ivw v vmmn o mlislsws s s oss s emd e s 5ias o s 193
Running the Textmode Democcovviiiiinvrnsensenses 194
IVIOUSE it o 05 5 5% B0 S o o ST b g S0 B E Tt b 196
THe MDReDertO CLasB . 40 viw s vn o s vblosisionns 5 m bam dau s dh 196
MOUSE BYENS~ s o vsosivs s sl s mssrs s 5 s b ol 5 mmir Giddiers o5 197
PLIRE it 2 i 00 ool 315 g 5.5 b BB it & M0 T8 et T BB i 198
The Detnobirector CIass: . . .o oo vivis aoisisvniie s srretie 5 onvss s 198
THESPHEE CIIBEo b o wais e s b B0 @ 0800 S WRE S e o 202
THE PLanetDBo CLAEE -, . 5 wv i vl v s oo sor tnimh s s nm iy o & sl Finiacs 4 o 204
THhe i FONCHON .1 s w5 b s .50 0 8 P i g ot s o Ay e 2 204

T CETACTIOR it 4700 it 5 v i 55 A oot o o ooy olbmes s & o T ns b i AR o 205
SOURACLIDS. ... fdi v oo et ol s o e 3 5000 Sl s 3 Ty AT os R ol 206
GREVIIE BRI, ' o5 o 0560 9 s 5 PR TS el o8 i) e B4 207
PIRVINE SOUNG CHDE s s s iamns oo b pis s s aiim £ois w's Wi i aiain o s 207
Building the SEX LAbrarycobuereivvesocrnssonsssons 207

o311 i AT Y e SEAPAIE NI e i o TS F-oulss iy o 208

Table of Contents xv

THE POBACTARE. & & v wis 00055 00855 58 505 § ibie omi s 0ommmn » o0 208
The Skater Classttt 211
The SkaterDemo Classooiiiiiiiiiiineennnnnnn. 215
The main Functioniiiiiineiinneennnnn... 216
The MusicHand Objectttt 216
Building the XMI Libraryovuiiunn... 217
PlayingaMusic CLlp ...ttt 217
Stoppinga Music CLipcoiiiiii i 217
Testing for Music Playingccoiiiniiniinnnnnn.. 218
Terminating the Music Driver 218
Marble Fighter 219
INtro aNd HEID SCYEEME +/x 1o v 500 s wr'sie o5 508 558 5 615 515501506 55 05 0 516 50015 5 219
IVICTIUIS: & ¢ ssises o5 s i WS 508 505, 6,8 1§ 6 0B ons & i 0% 4 m e & oo vm i oo g smims e o 221
The Fight 226
Multiple-Player 227
TOWIL womivis s mws onmus amaas s masns LAmssums i iRaniE@ms IEFRsARAES 4 228
The Town Classitiii e 229
CUELIST and CURSORLIST Tablescooiinon.. 230
Callback FUNCtionsouuiiiiiinneinennannennn. 231
Playing Musicand Sound Effectscccviiiiivnenennnnn 232
Stoppingthe Gameiiiiiiiiiiii . 233
The Derived Town Subclasses, 233
Navigatingthe TOown0t 234
Playinga VIdeO 'CLID v v o vive viomiie eimas oo sioie s i o ifia'ss o immns o 235
The TownApp Classttt 237
Theatris 237
The MenuUt e 238
TR PG i iis s s 50 mais o5 5005 40 5508 § 5000 o0 0 600509056 5080 5 6 605500 6 60000 50 4 56 240
Game Pieces 241
SROOtOUL ..ottt e e e 242

Multiple SPritesttt e 243

Xxvi

C++ Games Programming

STGOERIATIMATION. 5 i o b o st sieon s i s 5§55 g i o b 243
CHPPINE i v vl i b Sl s B st o 245
SKYSCrah i v vl v i B sl sitiin o P LanGRE TN B b s 245
Video Mode. .. oo D aianl ain s e ST 246
JOVStOERas o e e R e A ST R 246
Backavmnd Borolling .o covey i rli B fia by 58 ERuR S 248
CHAPTER | I: TheTheatrixToolset Ry
ABontEShareware .. Lo v kL L e LA R e 250
Doecuimentation and SUPDOTE © i viivb siiaindifiny v otbetsiiie famsgl van o nis 250
s T [RN i S e e O R e S S L 250
<2 2FE o R Ry L A S e i SR IR o T D K 251
MERAY ey i P i i Tahiss o ks T oy s AN T 251
PONVEREY . il il i b roaoiien s oo 7% ool ot Wi e s ool 10, ot S AR e b e 252
ATCREIY. “5 i r e i i i o 4wt s 0% e B s R e 252
POVIIEE . i i b i i T i s o A e s i 95 s 253
BlABtE VIS T vl i i o s bR et st R el S 253
Dave S TGARAMINAtOr . Lo s i i e iy il gl ot s 254
MT-<=Multi-Track Sequencer/EQItOr . o inveisiinsis s sl arunio. e . 254
MEODENEBAT . i b i e aoinah s i ledinss Wt oy e 254
1Y 2 2 ol R TR oo SO WP K| ol e S g N (e RS 285
FaStBIADIG 00 it s v o e i Pt sy B T o 255
DIGPAR andNMIDPAKR . di i b astata i i s s o s s v e 256
APPENDIXA: The CD-ROMcitiiiinrenennnnns 257
APPENDIX B: Theatrix C++ Header Files 4 Vi nn 265
BIBLIOGRAPHYov0c0ivenes R T O T S R v

GLOSSARYccov0otvcvccesscnsvssssosnsnsenseeeddd3?
INEIEIR iiii sl nneviimnns sieoanigbnssansnsnons vsbnedll

Preface

This book is the first in a series of two books about writing computer games
on the PC in the C++ programming language. This book addresses games that
run under MS-DOS. The second book, still under development as this book
reaches the market, will be about writing game programs with the Win32
application programming interface—32-bit applications that run under
Windows 3.1, Windows NT, and Windows 95.

The premise of this book is that programmers can build professional-
quality games in C++ by exploiting the wealth of shareware, freeware, and
public-domain graphics and modeling tools that are readily available and that
support game development. You can use inexpensive tools and libraries;
some of them are free, and others are shareware—available for you to try out
first and then buy only when you are satisfied with the results. The CD-
ROM that accompanies this book includes many of these tools. This book
goes one step further by introducing and providing the source code and
documentation for Theatrix, a C++ class library that encapsulates all the
behavior of game programming in a simple interface. The Theatrix paradigm
uses a metaphor wherein game development proceeds much like that of a
theatrical production.

xvii

xviii

C++ Games Programming

There can be no doubt that computer games are entrenched as a vital part
of our culture. From humble beginnings, they have spawned an industry that
now ranges in scope from the serious business of aircraft and spacecraft flight
simulation to the whimsical trek of cute sprites through mazes of obstacles
and rewards. Astronauts learn to handle orbiting spacecraft by using flight
simulator software. At the same time, ordinary people stand in line to pop in
their tokens and use the latest simulators at the local mall’s arcade. They fly
through space, drive the Grand Prix, or engage in street battles with ominous
cybernetic opponents. New home computer games such as Myst sell out as
soon as they arrive at the stores. Games such as Under A Killing Moon have
the appearance of movies, with real actors who seem to interact with the
game player. TV series and movies are being produced with computer games
as their central themes.

People have always played games. It is in our nature to create imaginary
environments and situations in which we play roles and fulfill our inner
wishes. An infant concentrates on toy objects, centering its play activities on
the toys themselves. As the child matures, objects take increasingly smaller
roles in playtime and give way to imagination. The objects become artifacts
in a larger imaginary world that the child creates in its mind, often with the
collaboration of other children. And thus the child invents role playing.

The games and roles that we play as children prepare us for adulthood. Our
ability as adults to relate to one another on civilized levels stems from the
social skills and lessons we learn as children when we play together. In a
nonhostile environment, we as children learned about appropriate and
inappropriate behavior—what works and what does not. And we did that by
creating circumstances and situation within which we could act out various
roles, trying out different behavior. Our reactions to one another conditioned
us to associate different behavior with approval and disapproval at the peer
level. The disapproval was nonjudgmental and was soon forgotten by the
disapproving party, but the object of that disapproval (and of approval, too)
learned valuable lessons from the experience.

Gradually the fantasy worlds of the child assume lesser importance as
adult responsibilities require us to deal routinely and effectively with the
world. The success that we achieve in the world is often a measure of the
quality of our childhood and the degree to which we as children enjoyed
meaningful play.

Preface

But the child in us never dies. Despite the challenges and obstacles of
survival and adult responsibilities, we continue to enjoy playful activities
throughout our adult lives. Over the years the games change, and so do the
shape, function, and cost of the artifacts of our play. As we invent
increasingly convenient ways to provide our basic needs, we must likewise
invent new ways to occupy the leisure time that results. Adult games and
their artifacts are more complex, challenging, and expensive than those of
children. Golf clubs. Sport and recreational vehicles. Stereos. Vacations. Club
memberships. Computers.

Computers, indeed. The computer has changed or influenced virtually
every aspect of the human experience in the half-century that usable
computers have been around. Computer games are an example of that
phenomenon.

No one knows for sure who played the first game on a computer or what
that game was, but from at least the mid-1950s, and perhaps earlier, people
have been using the computational features and storage of computers to
simulate worlds, universes, and the rules of game play. For many years,
access to computers was limited to those who worked with them. However,
due to the size and operating costs of those early computers, personal and
recreational use was mostly discouraged, and game technology did not
advance much. The personal computer revolution changed all that.

There have probably been more different game programs developed and
distributed for personal computers than programs of any other kind, and that
circumstance continues today. But most such programs fade quietly into
obscurity: Perhaps a game fails to interest users; maybe the author does not
adequately market, distribute, and support the game; in many cases, the
game’s implementation is simply amateurish, unreliable, or inefficient. This
book does not tell you how to design the concept for a successful game or
how to bring it to market, but it does provide the tools with which you can
build games that exhibit the professional touch—animation, photo-realistic
scenes and characters, integrated sound effects and music, and fast displays.
Lights, camera, action.

The evolution of PC game technology and the complexity of PC game
software have kept pace with the advancing technology of personal computer
display, storage, and processing speed. Until recently, however, the evolution
of game development did not track advances in programming technology.

XIX

C++ Games Programming

Object-oriented programming languages and graphical user interface
operating systems were not among the options of serious game developers.
As effective as those tools are for developing commercial software and
hosting its operation, those environments were traditionally far too
demanding of the computer’s resources to support games of any consequence.
Most games were written in C, assembly language, or a combination of the
two, and they “took over the machine,” which means that all the computer’s
resources had to be dedicated to the game while it was executing.

All that has changed. Contemporary mainstream desktop computers
possess sufficient internal memory, removable mass storage, and processing
speed to support not only the operating systems of today but also applications
with heavy resource demands—and those applications include games. The
work represented by the contents of this book and its accompanying CD-
ROM reflects this revolution and its consequences.

From Al Stevens:

In the summer of 1994, Stan brought his Theatrix C++ class library to me for
my opinion. I've never been a game programmer, but the level of abstraction
in the class design was so impressive that I decided to give it a try and write
my first computer game. In a couple of days and with only about 500 lines of
C++ code, I built an arcade-style game with background scenery and sprites
that move around the screen like the characters in an animated cartoon.
Most of the work was the artistic part—designing the scenery and the sprites
with a paint package. That one facet of the project is what fascinated me. By
using good tools and a well-designed class library, you can concentrate most
of your effort on the important stuff—the artwork.

After realizing that virtually all the game-building tools we were using are
shareware or free software, Stan and I decided to enhance and improve the
library and develop example games that people could use in the development
of their own games. The project was compelling. I found myself engrossed in
subjects that I had long ignored: 3-D modeling, ray tracing, image palettes,
animation, sound generation, MIDI music files.

Eventually, we had to decide what to do with the project. As far as I was
concerned, there was no problem finding a medium with which to distribute
our work. I'm already a book author, and game programming books are

Preface

popular now. Fortunately for me (and for you, too, I think), Stan agreed, and
this book is the result.

From Stan Trujillo:

For as long as I've been playing video games, I've been fascinated by them. As
soon as I saw a game, I'd want to play it, and as soon as I played it, I'd want to
figure out how to win. Beating a game wasn’t enough, though, because after
winning, I'd want to win all over again, but this time with style. All the
while, during each stage of involvement, one question plagued me:

How did they do that?

This question bothered me for years, and the answer (which I was slow to
realize) was: with tools that you don’t have.

Behind each game, I pictured teams of eggheaded computer scientists who
were so smart that each of them was in a perpetual state of creative bliss. I
though that each one of these geniuses was capable of sitting down at any
computer and writing a complete game from scratch without any special
tools and without once needing to consult a manual.

This fantasy could not be farther from the truth. Every game that you've
ever seen was written by normal people on normal computers. What do they
have that you don’t have? Tools. Not just generic tools such as compilers and
editors, but game-specific tools such as game engines, sprite designers,
palette utilities, and sound clip editors.

When I finally figure this out, I decided to write a C++ class library that
was designed specifically for the development of games. I planned to use it to
develop my own games, and perhaps I still will, but in the meanwhile, I
showed it to Al. Much to my amazement, he suggested that we co-author a
book on the subject. There was no question about it (but I tried to act as if it
was a tough decision anyway). We spend a few months enhancing the library,
writing demos, and collecting great shareware and freeware utilities. It was a
lot of fun, and I couldn’t be more pleased with the outcome.

Introduction

“Play it, Sam,”
Ingrid Bergman

Welcome to the world of PC game software development with the C++
programming language. You are about to embark on a rewarding and
enjoyable journey, one from which you may not want to return. Whether you
go beyond this book to build the next great, wildly successful, player-
addicting game remains to be seen, but one thing is sure--if you venture any
further than this chapter, your life will be changed. Among the pursuits of
craftsmen, none gives greater satisfaction than the creation of something that
delights its audience. And nothing on a computer is more delightful than a
well-crafted game. Follow this road and you will be hooked, we promise you.

This chapter introduces these subjects:

® The Theatrix C++ class library
& Objectives of a game library
© You, the game programmer
& What to expect from this book

2 C++ Games Programming

Theatrix

This book is about writing C++ programs that implement computer games to
run under MS-DOS. We provide and describe tools for game construction and
give explanations of how and when to use them. The underlying technology in
this approach is Theatrix, a C++ class library and toolkit that encapsulates the
functionality of computer games. A survey of the existing books on game
development reveals that most of them teach game programming at the
lowest, most primitive levels. Programmers learn about the details of
hardware and low-level application programming interfaces (APIs) that address
the video, sound, mouse, and keyboard. Then they write programs at those
levels, usually in C or assembly language. With Theatrix, programmers
concentrate on the high-level components and logic of the game itself, leaving
the details to the library’s hidden C++ implementation. This approach brings
game development into the modern software development environment of the
present. By using the C++ class mechanism and proven tools, the game
development process becomes structured and object-oriented and provides the
fastest way available to get a graphical computer game up and running.

In addition to being a class library, Theatrix includes a suite of game-
construction tools collected from the many shareware, freeware, and public
domain programs that are widely available. The class library and game-
building tools are included on the accompanying CD-ROM.! We provide
many examples of complete games that we developed by using only these
tools. The CD-ROM contains the C++ source code for all the games. In fact,
this book contains more demo games than any other game programming
book available today. The demos represent the kinds of games that you can
build, from the simplest to some complex examples. The CD-ROM contains
all the artwork in each of its forms throughout the game development cycle.
Everything you need to build the artwork is there: the fonts, conversion
programs, graphics construction programs, 3-D modelers, and sample image
files for scenery and sprites. All sound and music clips are there in each of
their forms, too.

IThere is one exception. The POV-Ray ray-tracing program is not on the CD-ROM, but it is
easily obtained by download from the CompuServe Information Service. An agreement between
the tool’s creators and another book publishing firm restricts us from distributing POV-Ray. We
do, however, describe how we used the program, include examples of the image source code and
image files, and explain how you can get a copy of the program. Chapter 11 has details.

CHAPTER 1: Introduction

This book is more about the technology of game construction than it is
about game design. We discuss some of the components of game design, but
no book can cover all the possible ideas. A computer game is an expression of
someone’s ideas. A jazz musician cannot tell someone else how to improvise
a riff. A painter cannot explain how to conceive a great picture. A writer
cannot just tell someone how to effectively describe in deathless prose a
particular scene. Those artists can teach only their craft, which consists of
the tools and techniques that underpin their art. It is through the practiced
application of that craft that the student’s inner ideas find their own
expression and art is formed. Any artist will tell you that you do not find true
artistic freedom in your own expressions until you master the medium.
Ultimately the quality of art is a collaboration of the artist’s skill with a
medium and his or her ability to have unique ideas and the freedom to
express them. The ideas behind your games are, therefore, necessarily yours,
although we encourage you to use our examples to stimulate your
imagination. The freedom to express your ideas becomes yours when you
master the tools and techniques. This book gives you the tools, explains the
techniques, and teaches you how to use them.

Many people use and enjoy computer games. As long as there are
computers, there will be an active market for new games. By now we must
realize that it is not possible to saturate the game market. Why not? Simply
this: First, many games cease to be interesting to the player once the player
has conquered the game. Second, every new game whets the player’s appetite.
There are some exceptions to the first property. Flight simulators, card
games, and 3-D maze games, for example, can offer infinite varieties of game
scenarios, so their novelty does not wear off so quickly. There is no exception
to the second property. Every new game makes the chronic player hunger for
more. That’s where you come in. An eager market awaits your games.

Objectives

A computer game’s construction involves all the components of a theatrical
production. Later you learn to carry that metaphor forward through the use
of Theatrix, the C++ class hierarchy that implements it. This discussion
concentrates on the objectives of the Theatrix class library and its suite of
game-construction tools.

C++ Games Programming

Details: What to Know, What to Hide

In the old days, a computer game builder had to know and do it all. You
needed an intimate understanding of the computer’s video, keyboard, mouse,
joystick, and sound-generation hardware—an imposing scope of knowledge,
to be sure, but not nearly as daunting then as it is today. The typical
computer game of yore was written to run on a particular suite of hardware;
the programmer had to master only one small set of configurations. Not only
do the PCs of today have various and incompatible hardware options, but
also their architectures are arcane and esoteric.

It is our position that programmers do not need an intimate
understanding of details of SVGA/XVGA memory and register architecture
in order to display images and text on a screen. Entire volumes have been
written on video architecture, and you can read them if you wish, but you
do not need to.

You do not need to know how to poll the mouse to see where its cursor is
or whether a click has occurred. The mouse architecture and interface are
standard now, and its interface involves a moderately complicated APL There
is an accepted reference work on using the mouse, but you do not need to
understand those details.

The same thing is true of the keyboard. There are many ways to read the
keyboard on a PC. You can intercept the keyboard interrupt vector and read
the keyboard input port. You can use calls into BIOS to poll and read
keystrokes. You can call the higher-level (and less efficient) MS-DOS console
input functions. You can use the standard C++ istream cin object, which
encapsulates the MS-DOS console input functions. Each of these techniques
represents a higher level of abstraction.

In the same vein, your understanding of image page swapping, animation,
sprite Z-ordering, and screen scrolling need not extend beyond knowing how
to make them work at the highest possible level of abstraction.

Levels of Abstraction

How much you must understand about low-level details of implementation
describes the level of abstraction at which you operate. You may view level
of abstraction as an imaginary line somewhere between the hardware at the
lowest level and the application problem being solved (in this case, the game

CHAPTER 1: Introduction

being developed) at the highest level. As the level of abstraction falls, it
exposes more details of implementation. Furthermore, the lower that line
gets, the more complex the details become. As the programmer, you must
understand everything from the highest level down to your particular,
personal lowest level of abstraction. It follows that the higher that line, the
fewer details you have to deal with and the more details you can forget about.

People who understand details of implementation have built detailed
functionality into libraries for others to use. By using those libraries, we raise
our level of abstraction. The higher our personal level of abstraction, the
fewer details we need to be concerned about. It is, therefore, advantageous to
use those libraries.

Consequently, an objective of Theatrix is to raise the game programmer’s
level of abstraction as far as possible above the details of implementation.

Because no single programming metaphor suits every possible
programming need, a concomitant objective permits the programmer to use
interfaces that exist at several levels of abstraction.

Encapsulation

Theatrix encapsulates the details and interface of a game-construction
metaphor. Its objective is to provide an interface that hides the details of
video page management, video effects, animation, sound and music
generation, keyboard and mouse event processing, and message dispatching.
The implementation uses driver libraries for video displays, the keyboard, the
mouse, and the sound card. The interface hides the details of those libraries
so that programmers can ignore them.

The Theatrix Metaphor

A metaphor is like a parable. It tells a story that uses an analogy to make a
point. The analogy associates something that we already understand with the
lesson that we are about to learn. The familiar helps to explain the
unfamiliar. One of Theatrix’s objectives is to provide an intuitive metaphor
through its class design. By associating game construction with more familiar
human activities, Theatrix helps programmers understand and remember
what the components are, how they relate to one another, and when it is
appropriate to use each one in the development of a particular game.

C++ Games Programming

The Theatrix game-construction metaphor equates the components of a
game with the participants in a theatrical production. There are directors and
players. The directors manage scenery and direct the actions of the players.
The players control their own movements and originate their own voices and
sound effects. There are conductors that generate music. This metaphor is
modeled in a class hierarchy. A game program derives game-specific classes
from the Theatrix classes and instantiates objects of those game-specific
classes. The objects register for and receive cues from each other and from
Theatrix—keystrokes, mouse events, timer events, and game-defined
messages.

Performance

For a game to be taken seriously by the game-playing public, it must perform
well. Sluggish games will be rejected. It follows that a class library that
encapsulates game components must likewise perform well. We used
performance as the major criterion for the selection of our tools, and we kept
performance in the forefront throughout the development of the Theatrix
library.

A Comprehensive Toolkit

We wanted the Theatrix toolkit to be complete, comprehensive, and
obtainable. A game developer needs good tools for building graphics, sound
effects, music, and video. There are expensive commercial packages that
support those activities, and if you like them and can afford them, then by all
means use them. But we did not want to limit the use of Theatrix to people
who could afford high-end tools. So we went in search of and found quite
acceptable tools that support all our requirements yet are within the budgets
of most independent developers. Many of these tools are free.

You can use the tools on the CD-ROM to test and experiment with the
example games, and you can use them to begin development of your own
games. We selected tools that are available and supported. In some cases, the
tools are free for you to use as is. Others are shareware, and, if you expect to
continue to use them, you should pay the nominal registration fees to their
authors. Still others are freely distributed for you to develop with, but you
must pay a nominal license to use them in game products that you
distribute.

CHAPTER 1: Introduction

Extensibility

We designed Theatrix to be extensible. If you want to incorporate other
features into the library, you can derive from the existing classes. If you
prefer to use different libraries for graphics, sound, and so on, you will find
those functions isolated in the class system and you can build or derive new
classes to replace the classes that use the supported libraries.

Who Are You?

Building a killer computer game involves many skills and much imagination.
The best games employ the talents of conceptual designers who create the
game’s premise and objectives, creative writers to write the scenarios and
design the levels, graphics artists to design the scenery and sprites, musicians
to compose and record the score, sound technicians to create effective sound
effects, and computer programmers to write the code that brings together all
of the above.

You may have these skills, but you are definitely a programmer, and this
book assumes that you have a working knowledge of the C++ programming
language. We do not spend time explaining object-oriented programming,
C++ class design, or C++ language constructs. If you are not familiar with C,
you should read Al Stevens Teaches C, by one of the authors of this book. (It
should be obvious which author.) If you do not know C++, we suggest that
you read Teach Yourself C++, 4th Edition, also by Al Stevens. We assume that
you understand how to compile and link programs and what an object library
is. You are expected to understand the implications of source code header
files and C/C++ macros. Beyond that, all you need is a desire to understand
and build computer games.

It is a lucky coincidence that building a computer game requires the skills
of a programmer. Programmers are the most inveterate of game players. We
enjoy challenges, puzzles, and complex constructions. The very nature of
programming involves building and solving the mysteries of the most
intricate of mazes, the computer program. We are qualified game builders
because we are inherent game players.

There are two possible reasons that you might be reading this book. Either
you are fascinated with computer games—Ilove them, fixate on them, can’t

8 C++ Games Programming

live without them—and have a white-hot burning desire to build games of
your very Own; Or you are just a programmer who sees all the money that the
game builders are making, and you want a piece of that action. If you fit into
the first category, you are the perfect candidate to read this book. If the
second category describes you better, then you are in for a happy awakening.
In addition to being rewarding, game development is pure fun. This subject
matter is compelling. Unless you are a completely boring person, which we
doubt very much, you will get into it, and we mean really into it.

What Do You Need?

To run the example games on the CD-ROM, all you need is a PC with a VGA
that supports the mode-X video mode (320 x 240 resolution with 256 colors).
To compile the source code and build your own games with Theatrix, you
need a DOS C++ compiler that supports ANSI runtime type information
| (RTTI) additions. We developed this software with Borland C++ 4.5. You
: cannot go wrong with that package.

Your Rights and Some Restrictions

The Theatrix source code is copyrighted by the authors. You may use it to
your heart’s content to build games, and you may distribute those games in
any manner that you like. We hope you build cool games (that we can play,
too), and we hope that you make a million bucks doing it. We encourage you
to give copies of the Theatrix source code to anyone, but you may not sell it
unless you are selling a copy of this book along with it, which, we presume,
you acquired through legitimate channels. Under no circumstances may you
publish any part of the source code and represent it as your own work.

The tools on the CD-ROM come from many vendors and have different
copyright and licensing restrictions. View the readme files for each tool to
see what your rights and responsibilities are.

The songs in the MIDI files are copyrighted. You are encouraged to play
them for your own entertainment, but please do not use them in programs
that you intend to publish commercially.

CHAPTER 1: Introduction

The example games are just that, examples. With a little practice you can
defeat any of them in short order. You may use them as launching pads for
your own game programs. The sprites and backgrounds are not particularly
exotic or original, so we do not mind if you use them. Your games, however,
should be unique and unlike any others. You should build your own sprites.
The POV-Ray source files (those that have the extensions .POV and .INC) are
hereby released to the public domain.

Getting Help

If you have questions about the Theatrix software, you can E-mail us on
CompuServe or the Internet. Al Stevens can be reached at astevens@ddj.com
or on CompuServe as 71101,1262, and Stan Trujillo is on CompuServe as
75233,1506.

For help with a particular tool from another vendor, see the
documentation file with that tool. Most of them can and will help you with
technical support if you have registered their product. Some of them
maintain a presence on CompuServe or the Internet and offer to answer
questions that way.

The Organization of This Book

This book describes the theories of game construction and provides tutorials,
examples, and reference material on the use of Theatrix and its tools. You
will not find much hardware detail about how sound is generated or how
video circuitry makes the phosphor pixels glow. The purpose of class libraries
such as Theatrix is to hide those details from those who do not need to know
them. The treatment of those subjects is, therefore, brief and superficial.

Chapter 2 is about game theory. It uses the history and evolution of
computer games to explain the components of games and the various kinds
of games that run on computers.

Chapter 3 provides brief descriptions of the technologies that games use.
Its purpose is to provide a common ground for later discussions and to ensure
that you understand enough of the PC’s architecture to build games that fit
within its operating limits.

10

C++ Games Programming

Chapter 4 discusses the technical aspects of game-building strategies. This
is where you learn to assemble the game components that are outside the
program code. You learn to create scenery using techniques that depend on
whether you want photographic realism or an arcade appearance. You learn
to design and build animated sequences for the action in your game. This
chapter describes how to build sound effects and the game’s musical score.

Chapter 5 is an introduction to Theatrix, the C++ class library with which
you integrate the game’s components into a running program. This chapter
gives an overview of the class hierarchy and explains the theatrical
production metaphor.

Chapter 6 is the Theatrix user’s guide. It contains operating instructions
for the utility programs.

Chapter 7 is the Theatrix reference manual, which documents the public
interfaces of the C++ classes in the Theatrix class library.

Chapter 8 is the Theatrix technical specifications, which describe the
operation of the software and the formats for the various data library files
that game programs use.

Chapter 9 describes the Theatrix development environment. The approach
taken here organizes the games into projects with makefiles that build every
game component automatically. The chapter includes a discussion on using a
small network to coordinate the efforts of a game-development team and to
share resources.

Chapter 10 explains each of the example game programs that are included
on the CD-ROM. This chapter is where you learn to use Theatrix, because it
teaches, by example, each of the features that the library supports. The
discussion addresses the operation of the games and the code and data files
that implement them.

Chapter 11 describes each of the tools in the Theatrix toolkit, explaining
when and how you use each one of them in the development of a game.

Appendix A explains what is on the CD-ROM, how you install the
programs, data files, and source code on your PC, how to run the games, and
how you can modify and recompile the software.

Appendix B lists the C++ header files for the Theatrix class library.

Game Theory

“Final kiss at seven.”
Guy Tibbets

This chapter is your introduction to computer games in general. We discuss
some of the early computer games to provide a historical perspective on how
they started and to illustrate how the evolution of games reflects advances in
computing power. Then we address the factors that go into the design and
development of a contemporary computer game.

You will read about these subjects:

© Early computer games
o Different kinds of games
& The components of a computer game

& The issues of violence and programming standards

11

]

12

C++ Games Programming

Early Computer Games

In the early 1960s, one of the authors of this book played his first computer
game. The computer was an IBM 1410, and it belonged to the U.S.
government. I (Stevens) was a civilian programmer, and an Air Force sergeant
named Guy Tibbets was the operator. The IBM 1410 was a character-based
machine with 100,000 characters of memory and a Selectric-ball typewriter
console device. The game was Tibbets’s idea. We would fill memory with the
NOP instruction (which consumed an instruction fetch and execute cycle
but did nothing), press the Reset button to position the instruction pointer at
address zero, and then press the Start and Stop buttons in rapid succession.
The console displayed the instruction pointer address where the stop
occurred. Our game was to see who could stop the computer faster, as
measured by the lower stop address. I could never beat Tibbets. It was a
simple and mindless exercise, but it passed the time on the night shift when
we ran out of jokes to tell.

The point of this story is twofold. First, given the opportunity, most
computer users will use a computer to have fun—when the General isn’t
around. Second, the manner in which a computer can entertain us is usually
a function of its processing power. That 1410, which filled a room, was
actually slow enough that a human being could move a hand from one
button to another in less time than it took the computer to execute 100,000
NOP instructions. Thus the limitations of the 1410 computer permitted the
game that Tibbets! contrived.

Chess

Computer games predate that early experience with a 1410. In 1959, an MIT
mathematics professor named John McCarthy wrote a chess-playing program
on the school’s IBM 704 computer. Chess programs are common today—you
can buy small microprocessor-based chess machines at Radio Shack for a
song—but at the time the program was a monumental achievement. It gave
credibility to a new discipline called artificial intelligence, one that was

ITibbets loved mind puzzles of any kind. He devised anagrams by scrambling the letters of your
name with an insulting comment. He'd give you the anagram and smirk while you tried to figure
out what it meant. Mine was the quote at the top of this chapter, which unscrambles to “Al
Stevens is a fink.” Tibbets also built a fully functioning merry-go-round from scratch out of junk
parts for the neighborhood children. I often wonder what became of him.

CHAPTER 2: Game Theory

generally regarded among the knowledgeable as showing little promise.
Computer game construction continued for several years at MIT’s Artificial
Intelligence (AI) Laboratory, where students had relatively unrestricted and
unmonitored access to government-funded computers.

Spacewar

In 1961, Steve Russell, one of McCarthy’s students, was given access to the
school’s DEC PDP-1, which had an oscilloscope display device that you could
control from a program—an early video terminal. Russell set about to create
the first video game, an outer-space confrontation between two players. Each
player controlled the movements and weaponry of a rocket ship by pressing
switches on the computer’s front panel console. The point of the game was to
destroy the opponent’s ship by firing a torpedo while at the same time
avoiding the opponent’s torpedoes.

The game survived for years, with improvements added by the
programmers at the Al lab. One of those improvements was the invention of
the first computer joystick, created from scrap parts by the programmers
because computer console switches were difficult to use to fly spacecraft and
fire torpedoes.

Life

The game of Life was invented by British mathematician John Conway and
was published in Scientific American in 1970. Life simulates a universe of
neighboring cells. Each cell, identified by its x/y address in a coordinate
system, may have one of two possible states. The cell is either populated or
unpopulated and is surrounded by eight neighboring cells. The game consists
of a sequence of generations. Each generation examines each cell to see (1)
whether it is populated and (2) how many populated neighbors it has. A
neighbor is one of the eight adjacent cells in the 3 x 3 array of nine in which
the target cell is the center cell. If an unpopulated cell has a certain number
of populated neighbors, the cell becomes populated in the next generation.
Conversely, if a populated cell has too few or too many neighbors, its
population expires in the next generation. A cell is born if there are enough
neighbors to spawn it and dies if there are either too few neighbors to support
it or too many neighbors with which it must share resources. Some
implementations of Life use screen character positions to represent cells, and

13

14 C++ Games Programming

the universe of cells is limited to the number of screen character positions.
Others use dense graphical screens on which to display the simulation.

The game of Life simulates the evolution of generations. To play the game,
you create the universe by specifying which cells are initially populated.
Then you run the evolution and observe how each generation modifies the
pattern of populated cells. The universe often takes on interesting
symmetrical patterns as the generations pass. Some patterns result in a
totally expired universe after a few generations. Other patterns result in a
stable universe. Still other patterns endlessly repeat a cycle of births and
deaths. A culture of Life players blossomed in the 1970s, and its members
often published and shared interesting starting patterns.

As with Spacewar, Life was given its own life at the MIT AI lab in the
early 1970s. For a time, Life dominated the concentration and lives of
researchers and students, who programmed Life to run on the lab’s PDP-6 and
spent most of their time experimenting with Life patterns.

The executable and source code for a DOS text-mode version of Life is
included on the CD-ROM that accompanies this book. See Michael Abrash’s
The Zen of Code Optimization (listed in the Bibliography) for a discussion of
Life as a study in how to optimize computer simulations.

Adventure

Adventure was developed in the early 1970s at the Stanford AI Laboratory by
Will Crowther and Donald Woods. Adventure uses keyboard input and
console output to establish a dialogue with the human player. Adventure
simulates a world of caves, dragons, dwarfs, and so on. The game tells the
player where the player is located and what the surroundings hold. For
example, when you first begin to play, you see this message on the console:

Somewhere nearby is Colossal Cave, where others have found fortunes in
treasure and gold, though it is rumored that some who enter are never seen
again. Magic is said to work in the cave. I will be your eyes and hands.
Direct me with commands of 1 or 2 words. (Should you get stuck, type "help"
for some general hints. For information on how to end your adventure, etc.,
type "info".)

You are standing at the end of a road before a small brick building. Around
you is a forest. A small stream flows out of the building and down a gully.
>

CHAPTER 2: Game Theory 15

From the prompt you type terse commands and directions. Following each
command, the program tells you where you are. For example, at the first
prompt you can type enter or go in and the next message appears:

You're inside building.

There are some keys on the ground here.
There is a shiny brass lamp nearby.
There is tasty food here.

There is a bottle of water here.

>

Subsequent commands retrieve items and navigate you through the world of
Adventure. It is a compelling and addictive game, particularly until you have
mastered it and retrieved all the treasures in Colossal Cave.

Adventure is typical of the first generation of action games, using text
displays and the player’s keyboard commands. Joysticks were not widely
available then, the mouse had not been invented, and computer graphics
were too slow and too low in resolution to display the kind of images that
Crowther and Woods described with words. If Adventure were being
developed today, it would be very different than it was twenty-five years ago.

The CD-ROM with this book includes the executables and source code of
Adventure as ported to C to run on a PC. The original program was written
in FORTRAN and displayed all its messages in uppercase, another example of
how the limits of computers influenced their games.

Contemporary Games

Early computer games had a certain charm and appeal that contemporary
games lack. Because of the limitations of the hardware, early games used text
mode or very primitive graphics. As a consequence, a principal ingredient in
games was the player’s imagination. The experience is akin to that of reading
a book; the reader’s mind provides the visual and audible details based on the
writer’s descriptions. Another analogy compares radio drama (for those of you
who remember it) to that of movies and television. The radio listener
supplied the scenery, the action, and faces for the actors. The medium
provided only voices, sound effects, and background music to tell its story.

16 C++ Games Programming

With vast improvements in display, controller, and sound technology,
game development has advanced far beyond the simple interfaces from the
early days, and the current crop of games reflects those improvements.
Typical of modern entertainment, today’s games emphasize action
represented by the visual and audible, leaving very little of those elements to
the player’s imagination. As a result, players concentrate more on honing
motor skills or using deductive reasoning to unearth the clues and beat the
game than they do on visualizing the scenery and characters.

Contemporary games come in many varieties; four common types are
simulators, real-time 3-D mazes, static photo-realistic displays, and arcade-
style animated sprite games.

Simulators

Not long after IBM introduced the PC in 1981, Microsoft began selling Flight
Simulator, a program that it acquired from a company called SubLogic. Flight
Simulator was a milestone program for two reasons. First, it was a realistic
simulation of the cockpit of a small airplane in which the player-pilot could
execute takeoffs, landings, and flight maneuvers. Second, the program
became the benchmark for compatibility when the PC clone market was
born. If a would-be PC-compatible computer could run Flight Simulator,
chances were good that it would run anything that a true blue PC could run.

The first Flight Simulator was truly impressive. It ran in a 4.77-MHz 8088
machine with no hard disk and 512K of internal memory. The Color
Graphics Adapter display had a monochrome graphics resolution of 640 by
200 pixels. By today’s standards, the original PC was tiny and underpowered.
Yet Flight Simulator managed to display a full instrument panel with moving
needles and changing digits; a pilot’s view through the windshield that
rendered the outside world in real time; a computer model of the terrain, a
few buildings, and an airport in Chicago; and engine sounds through the PC’s
tiny speaker.

Flight Simulator has kept pace with advances in hardware. The latest
version (5.0) uses a photo-realistic instrument panel, fractal scenery, and
enhanced visuals of some scenery that maps digitized aerial photography over
the terrain renderings. It also requires a fast processor and many megabtyes of
hard disk space.

CHAPTER 2: Game Theory

There are many other flight simulators for the PC. Most of them
emphasize air combat missions, although a few, such as Chuck Yeager’s
Advanced Flight Trainer 2, teach the elements of flight rather than combat.
Others include simulators of bombers, fighters, helicopters, ultralights,
gliders, biplanes, and even the space shuttle. An air traffic control simulator
allows Flight Simulator pilots on networks to fly in controlled airspace. One
player is the air traffic controller; the others are the pilots.

Simulators are now available for race cars, submarines, tanks, and every
imaginable kind of spacecraft, including the Starship Enterprise. They all
have one thing in common. They render their scenery in real time. The
program maintains a computer model of the world in which the simulated
object moves. That model describes the terrain and features such as
buildings, bodies of water, towers, statues, trees, pylons, and so on. As the
simulated object moves through this world, the program uses the model to
render each frame of the player’s view as the view changes.

This book is not about writing simulators, although you could use the
Theatrix class library to implement one. Two books in the Bibliography
address flight simulator technology and construction in detail. They are
Flights of Fantasy and Taking Flight.

3-D Mazes: Doom

In the early 1990’s, Apogee Software introduced a shareware game called
Wolfenstein. In the game, the player is a hero of sorts who wanders through a
3-D maze of corridors and doors and does battle with Nazi types who appear
at random from inside doorways and around corners and who shoot at the
hero. The game and its display techniques launched a new generation of
games culminating with Doom, the most successful shareware game ever
produced. Doom was developed by the programmers who wrote Wolfenstein
after they split off from Apogee. Doom originated as a DOS shareware game.

Wolfenstein, Doom, Blake Stone, Descent, and other 3-D maze games use
a display software technology called ray casting, which is a way to rapidly
compute successive frames of complex scenery in real time. The Theatrix
library does not encapsulate the functions of ray casting, and this book is not
about developing 3-D maze games. Two books in the Bibliography
specifically address game development with ray casting. They are Tricks of
the Game Programming Gurus and Gardens of Imagination.

17

bl

18

C++ Games Programming

Static Displays: Myst

Myst is completely different from Doom. Although the two games represent
different game development strategies, they are also the two most successful
of contemporary computer games. Myst was originally a Macintosh game
that was later ported to Windows. The Windows version is by far the more
popular. A sequel to the original game is now under development, and it
promises to be a runaway best seller.

Myst plays out its scenario beginning on an island where the player moves
about and gathers information. From that information the player learns to
travel to and return from other islands where the player gathers more clues.
Gradually the clues combine to reveal the purpose and eventual completion
of the game. At first, players do not know the purpose—or even the
premise—of the game. The magic of Myst is in the way the mystery unravels
itself as players move around in the beautiful and mystical worlds that the
game provides.

The scenery in Myst consists mostly of static displays. The player moves
about by clicking the mouse on points on the screen. The program changes
the player’s view accordingly. These views are rendered in advance by a
technique known as ray tracing, which provides photo-realistic images of
scenes represented in a computer model.

Myst frequently uses small inserts of video clips superimposed over the
static displays. Some of the video clips are actual video images created with a
video camera. Others are constructed from animated sequences of scenes
rendered in advance with ray tracing and compiled into video files that the
computer can play back.

Sound effects and music are an integral part of Myst. Many of the clues
depend on sound effects. The music provides no clues or information, but
greatly enhances the visual effects of the game by adding to the mood.

The Theatrix library supports the development of games such as Myst.
The toolkit includes 3-D modeling and ray tracing tools, and the library
supports static displays, selective mouse control, coordinated sound effects,
video clips, and music.

Sprites and Backgrounds

Games such as Putt-Putt and Leisure Suit Larry may be at opposite ends of
the family values spectrum, but they use similar animation techniques. A

CHAPTER 2: Game Theory

static background provides the scenery, and small animated characters, called
sprites, move around the scene and provide the action. The player controls
the game with the keyboard and mouse. When the scene changes, the game
displays a new background.

Some games use scrolling backgrounds. As the sprites move around, the
background scrolls to keep the sprites in view. This technique allows the
game to seem to cover more territory without changing scenes. Arcade games
such as Super Mario Brothers use scrolling backgrounds.

Theatrix supports animated sprites and both static and scrolling
backgrounds.

Your Game

All the discussions until now have been about games that other people have
developed. Now it’s time to consider your game, and that’s what we’ll
concentrate on from this point forward. This chapter addresses the theory
behind the components of a PC game and the options you have when you
build one. Chapter 3 is about the technology, and Chapter 4 is about the
strategies that you apply in building your game.

After you have decided to write the next killer game and sweep the
market, you have to build it. To do that, you start with the game’s purpose
(other than to make you a pile of money, of course). What is its point? What
are the objectives? What is expected of the player? What does the game itself
provide?

Develop a theme. Will your players kill or be killed? Or will they explore,
collecting treasures and gathering clues? Must they manipulate a vehicle?
How about weapons? Will there be one player at a time or more? Will the
game support multiple players at a single PC session, or is a network
involved?

Develop a scenario. Sketch out the scenes and the game’s progress. Identify
items that appear in each of the scenes and their consequence to the player.

Who are the players going to be? Small children? Teenagers? Adults?
Senior citizens? Does the game make assumptions about the players’ cultural
or ethnic backgrounds?

Will music play a role? Sound effects? Video clips?

19

20 C++ Games Programming

How will the player control the game? With the keyboard? With the
mouse? With a joystick?

Will the scenery and characters be realistic? Surrealistic? Have an outer-
space look? Be pastoral? Have an arcade look?

All these decisions help you select the technique for presenting the game
and the tools that you need. The example games in this book have all the
scenery and use all the features just mentioned—music, sound effects, video
clips, mouse, joystick. You won't find all the elements in every game, but
everything just discussed exists in one or more of the example games.

Scenery

Designing scenery is a major part of game design, but it’s something that
doesn’t call on your programming skills at all. Whether you use a paint
program to construct a scene or render a 3-D model into a ray-traced, photo-
realistic image, the result is a screen full of colored pixels that the program
copies into video memory. When you use a class library such as Theatrix, all
you do in the program is provide the name of the file. All the real work is
done in the construction of the scene.

There might be parts of the scenery screen that are significant to the
program. If a mouse click has meaning on a particular feature, you must
record the pixel coordinates of the click boundaries. You will need to
eventually plug these values into the program. If the scene includes a door
that opens and closes, you need to record the coordinates that define the
door’s rectangle. If sprites move about in the scene, you need to map a path of
screen coordinates that represent the movement.

Characters

The characters in a game—the sprites—are like the actors in a play. They
move about among the scenery, speak lines, and make things happen.
Through animation, sprites provide the action in the game.

Not all sprites represent living creatures. A door that opens and closes can
be a sprite. So can a table that slides across the floor. Anything that moves
against the static background scenery is a sprite.

Animation of a sprite involves rendering in advance all the frames
necessary to represent motion. A walking sprite needs frames to display the

CHAPTER 2: Game Theory 21

character in each of the configurations of steps. If the character moves toward
and away from the player’s view of the scene, there must be frames of
different sizes to suggest perspective. Sometimes you render these frames in
advance. Other times you have one set of frames for each motion and
compute and render the size at runtime.

Video Clips

Not all moving things in a game are implemented as sprites. Sometimes you
use video clips. These clips can be animated sequences built from 3-D
models or individually painted frames. They can also be real video sequences
captured onto disk from a video input card connected to a video camera or
VCR. There are standard formats for these video files, and Theatrix supports
their display.

Myst uses many video clips. The scenes where the characters speak from
behind books in the library are video clips. The porthole view of flying into
the island of another world in a spaceship is a video sequence made by many
renderings of a 3-D model of that flight.

Sound and Music

Sound effects and music add an extra dimension to a game. The PC has a
programmable speaker, but its small bandwidth limits its use for effective
sound generation. However, most game players have add-on sound boards in
their PCs. These boards are capable of producing high-quality sound effects
and synthesized or sampled music. By using these sound boards, even games
that do not depend on sound to communicate with the player are more fun to
play. If the game slams a door or fires a shotgun, the sound adds to the effect.
Music, as played from MIDI files, adds mood and texture to a scene.

Menus

If there is more than one place for a player to start when playing a game or if
the player can make choices at strategic points in the game, a menu is a good
way to present the choices and get the selection. A menu shows a list of the
possible selections and provides a way for the player to make a choice. Every
computer user is accustomed to menus. Game programmers have the
freedom to use any menu technique they like. Unlike other development
environments, Theatrix does not impose a standard for menus on the game

22

C++ Games Programming

programmer. (See “What About Standards” later in this chapter.) For that
reason, there is no menu class in the library. You should design a menu to
reflect the atmosphere that your game presents and use the Theatrix
paradigm to display the menu and retrieve the player’s choices. The menu
should be simple and easy to use. Some of the example games on the
included CD-ROM use menus, and you can use these examples as a guide.

Options

A game’s options can be as simple as allowing the player to specify a skill
level or as complex as letting the player modify the game itself. Most action
games allow you to join in as a rookie or trainee and then raise your skill
level as you become more experienced. This approach allows players to get
into and enjoy the game well before they are proficient with it. If you do not
provide such an option in a difficult action game, then either your game is
not so difficult after all—it is too easy, in fact—or players will give up in
frustration before they have discovered all that the game has to offer. This
concept does not apply so much to passive games of discovery such as Myst,
where players can take their time. It is more important in games—such as
Doom—that require the player to apply refined motor skills and fast reflexes
to survive.

As with menus, the way that you display options and get their values
should look as if it belongs to the game. The example programs on the
included CD-ROM show you ways to do this.

Saving Games in Progress

If a game is complex and takes a while to complete, you should provide the
ability to save and restore the game’s status. There’s not much that a library
can add to what Standard C++ already provides for reading and writing disk
files, but you should understand the concept.

Saving a game’s progress consists of recording a number of status
indicators and values into a disk file that the game can read during the
initialization of a subsequent session. You should identify each of these items
when you design the game’s scenario to facilitate designing the save and
restore software logic. The current status of a game consists of the progress
that the player has made and the options under which the game is running, If
the game has successive levels, the current level is one item of progress. If

CHAPTER 2: Game Theory

there are foes that have been vanquished, that fact should be recorded for
each one. If items have been moved or bodies are strewn about, the location
and identity of each one is saved. Any persistent data value that influences
how the computer plays the game or that affects the player’s location, skill,
or progress should be saved.

When the player shuts down without having won or lost, the game
program should ask whether the player wants to save the game. If so, the
game program writes the status data into a disk file.

When the game begins at another time, the player must have the option to
restore a previous game, in which case the game loads the status data into
memory and proceeds from the last point of departure.

Suppose more than one person plays the game at different times but on the
same computer. The game program needs to tell them apart. There are two
ways to do this. One way is to name each saved game data file. When saving
the game, the player specifies the saved game’s name. That name is used later
to retrieve the game. Another way is to provide a sign-on log. When a player
starts the game, the program displays a list of players and allows a player to
select from the list or to sign on as a new player to be added to the list.

Multiple Players

There are two ways to support multiple players in a game. One way is to let
both players have their own controllers and use the same computer. Such
games usually use a joystick, because sharing a keyboard or mouse can be
awkward. The other way is to connect two or more computers in a network.
The computers all run the game in a multiple-player environment, and they
communicate by exchanging packets across the network.

The network can be as simple as two computers connected with a serial
cable or by modem across telephone lines. Although many multiple-player
games run on local and wide area networks, the demands of a game are small.
The programs exchange small packets about such things as where the sprites
are and who is shooting in what direction.

Keeping Score

If a game has scores or levels of achievement, then the game should offer the
player an opportunity to record the results. A typical game displays a list of

23

24

C++ Games Programming

the highest scores and scoremakers, adding the latest score to the list if it
ranks among the highest. This list gives new players an objective to aim for.

Simulators often maintain and record levels of player achievement. A pilot
or driver can accumulate hours of experience and advanced ratings by
successfully executing prescribed maneuvers, such as cross-country trips,
instrument approaches, bombing raids, dogfights, and so on.

A game that records the progress of several players can use the same disk
file to record the players’ individual scores.

The Question of Sex and Violence

When people gather to discuss the issue of sex and violence in
entertainment media, you have to watch for outside agendas. It seems that
the only people whose opinions can be trusted are those who have no
personal stake in the outcome, and no one seems to fit that description.
Politicians posture for votes. The entertainment industry holds forth for
profits. Parents worry about wrong influences on their children. Civil
libertarians guard our rights to free speech and expression. It seems that
everyone has a stake in sex and violence.

Leisure Suit Larry depicts a couple of cute sprites having sex—under the
covers, to be sure, but there is no question about what they are doing. The
game may have more sexually oriented action than that one scene, but we
never got much further with it.

Doom is violent. It depicts death and carnage, complete with screams,
blood, and bodies scattered all over the landscape. The player does most of
the killing, selecting weapons from a deadly and varied arsenal.

Most flight simulators involve bombing or shooting down the enemy,
who, it must be presumed, are human beings.

Myst has no active violence, but it tells the story of long-ago acts when
beings did harm to one another. In one scene, a skeleton is seen hanging from
a gallows, a remnant of earlier, unseen atrocities.

CHAPTER 2: Game Theory

Descent takes a different approach to its violence. The player shoots down
unmanned drones that are themselves programmed to mindlessly shoot
down the player. The player never actually kills anything that is alive.

Some arcade games depict neo-gladiators tearing off one another’s arms,
legs, and heads. These games have come under public scrutiny, and a cry has
gone up for some form of industry self-regulation and a ratings system.

Despite what you hear during political campaigns and on talk shows, no
empirical evidence exists to support the position that children receive
negative influences from seeing improper behavior in entertainment media.
That is only emotional opinion. The absence of such evidence does not mean
that the opinions are without merit, however, only that they are unproven by
scientific means.

You must decide how you feel about this issue, because you have the
opportunity to add to and influence this culture in one way or another. One
thing is clear: There is a strong market for games that allow the player to fire
weapons and vanquish the enemy. You may draw whatever conclusions you
wish about a society that desires and seeks out such a release. If you think
that you know what’s right and acceptable, then you have found the answer
for yourself, and that’s what matters.

Until there are government regulations to control what people can publish
in a computer game (which is inevitable, we fear), everyone has to exercise
good taste and judgment. The market should guide us. If programmers make
the right decisions and the games are good ones and are properly marketed,
people will use and praise them. If, on the other hand, someone puts out an
obvious piece of trash where evil nuns slaughter little fuzzy puppies (we hope
we haven’t given anyone an idea here) or something equally stupid and
gratuitous, that work will be rejected and the programmer can move on to
other pursuits.

What about Standards?

Every aspect of programming involves standards. There are standards for
writing code, for documentation, and most particularly for the user interface.

25

26

C++ Games Programming

When DOS reigned, applications prided themselves on their proprietary
user interfaces. If you copied the menu and data entry screens of another
application, the chances were good that you would find yourself the object
of a look-and-feel lawsuit.2 Now that Windows prevails, applications pride
themselves on their common user interface, and they all look and feel
alike. Go figure.

Should all games look and feel alike? We don’t think so, not even if they
are Windows games. Each of the example games on the included CD-ROM
has its own unique interface. Some have menus, and others have options
screens. Their screens are designed to consistently maintain the aura that the
game supports. Some of the games use the mouse, others use the keyboard,
and still others use both. They do not necessarily use those things in exactly
the same ways.

The charm of games such as Doom and Myst is that their user interfaces
reflect the underlying theme of the games and are unique. Their menus and
options screens sustain the overall theme of the particular game. Command
structures are designed to facilitate effective play based on how the game
works rather than on a rigid definition of a standard way to do things.

Imagine playing Myst if you had to pop down menus and use dialog boxes
to rotate the tower in the Library and view constellations in the Planetarium.

Imagine Doom with radio buttons to set the level of play and command
buttons to fire a weapon.

It’s a game, folks. It’s supposed to be fun. It’s for after hours. Leave the
stuffy and constraining standards to those who wear ties and socks and who
write and use commercial applications with databases, reports, and scheduled
processing cycles. That description may fit you during your day gig, but when
you are off the clock, you can forget the standards and have some fun.

2In a famous litigation, Lotus sued Borland because Quattro Pro’s DOS user interface resembled
that of Lotus 1-2-3 for DOS. It has been reported that during that period, Philippe Kahn, then
Borland’s CEO, greeted Mitch Kapur, CEO of Lotus, in a restaurant by saying, “Good morning,
Mitch. How do you look and feel today?”

PC Game
Technology

“Go play with the town you have built of blocks...”
Stephen Vincent Benet

This chapter deals with the hardware and software technologies that
underpin a computer game. We discuss hardware architecture, multimedia
techniques, and software issues. We also address the creative aspects that
apply to generating the multimedia components of a computer game.

You will learn about the following subjects:

o

¢ ¢ 0 9O 9

Events and messages
Video

Graphics

Sound

Music

Game controllers

27

28 C++ Games Programming

Why Learn about Hardware?

Programmers who build conventional computer applications can usually
concentrate on the problem and ignore the hardware. The operating system
insulates the programmers from such details. Lucky them. Game
programmers, on the other hand, have always had hardware to contend with.
To a large extent, Theatrix hides those details, and it is possible to write a
game program without knowing very much about hardware. It always helps,
however, to understand how things work. In the case of subjects such as the
video palette, you need to generally understand the hardware’s operations so
that you can recognize their consequences and deal with them.

This chapter provides only an overview of hardware architectural issues so
that you understand them well enough to write effective games. Entire books
have been written about PC video architecture, programming the mouse,
MIDI music cards, and so on. Although you do not need to understand all the
technical complexities of these devices to develop a Theatrix game, you
might find them interesting. In that case, refer to the Bibliography for a list of
books on these subjects.

Event-Driven, Message-Based Programming

Theatrix implements an event-driven, message-based programming model.
The model vaguely resembles the way that Windows programs are written,
although the Theatrix message system is not nearly as complex as the one
that Windows programmers have to learn.

A Theatrix game program instantiates its game objects, registers for event
messages, and then turns everything over to Theatrix. The system then
watches for events to occur, intercepts them when they do, and dispatches
event messages to the registered functions.

Events are things that happen outside of and asynchronous to the game
program. Clock ticks, keystrokes, mouse movements, mouse clicks,
joystick motion, joystick button presses, and receptions of network packets
are all events.

Messages are function calls that the system makes to registered functions
of the game program. Messages report events to the game program. The game

CHAPTER 3: PC Game Technology 29

program gets only those messages for which it has registered. A message
registration specifies the function for Theatrix to call when the event occurs.

Game programs may specify internal application-dependent messages, too.
One function registers for the message. Some other function in the game
sends the message. Theatrix takes care of dispatching the message to the
registered function. In this case, the event is whatever the sending and
receiving functions agree that it is. Using messages loosens the functional
coupling between program components.

Game Controllers

The player controls the game with input from controlling devices. In arcade
games, unique devices designed for the particular game are installed on the
arcade machine. PCs, being general-purpose computers able to play many
different games, have common keyboard and mouse devices that were
designed for typing, menu selection, and other such mundane computing
tasks. Games must use those devices as controllers. There is one standard
device in the PC architecture that is a concession to game players—one that
seems to be used for little else—and that device is the joystick. Theatrix also
permits a game to be controlled remotely through a serial port.

Keyboard

The keyboard has been used for virtually every kind of game control. Many
champion Doom players prefer the keyboard to the joystick for moving
through the maze and firing weapons. Flight simulators always include
keyboard commands to control pitch, roll, and yaw in case the pilot’s
computer does not have a joystick. Real-life airplane pilots are often surprised
when PC simulator pilots become proficient at flying a simulator by using
the keyboard instead of more intuitive and realistic flight controls.

Action games often require the coordinated use of different sets of keys at
the same time. You might be changing direction with an arrow key to avoid
being shot while at the same time firing a weapon. BIOS and DOS keyboard
input functions cannot report such keypress combinations. Sensing them
requires a low-level device handler that intercepts the keyboard hardware
interrupt vector and reads the keyboard data port.

30

C++ Games Programming

Unlike a typical video terminal, the PC keyboard device is not an ASCII
input device. Pressing a key interrupts the running program. An interrupt
service routine executes and reads the keyboard data port, which delivers a
keystroke scan code. Each key on the keyboard has a unique scan code; the
code is unlike the key’s corresponding ASCII value. The BIOS function that
services the keyboard interrupt translates those keystroke combinations
into the ASCII value that your C++ program reads when it extracts from the
cin object.

The event-driven, message-based programming model used by Theatrix
permits elements of the game to register functions with keyboard events.
When a registered key is pressed, the system calls the game program’s
function. There are two ways to register. You can register for a regular
ASCII keypress such as the one you get from a BIOS function call, or you
can register for an asynchronous keypress, which calls your function as
soon as the registered key is pressed irrespective of other key presses at the
same time.

Mouse

The mouse is an asynchronous pointing device. When enabled, the mouse
driver displays a cursor on the screen. The cursor points to a screen position
related to the smallest unit of resolution in the current video mode. For
example, if the program uses Mode X, the mouse’s cursor points to positions
from 0 to 319 in the X axis and 0 to 239 in the Y axis.

The cursor’s screen position is coincidental to the mouse’s location on
your desktop. You can pick up the mouse and move it, and the cursor does
not move. You need to roll the mouse on a flat surface to move the cursor
on the screen.

A program can turn the mouse cursor display on and off, specify the
graphics configuration of the mouse cursor, set and read the current mouse
cursor coordinates, and read the setting of the mouse buttons. Mouse cursor
movements occur independently of the running program. When the user
moves the mouse, the mouse driver moves the cursor. The driver saves what
was displayed under the mouse cursor so that it can restore the screen before
moving the cursor to another position.

A game program needs to be aware of the mouse cursor. The program
should turn the mouse cursor display off during writes to the screen in

CHAPTER 3: PC Game Technology

graphics modes. Otherwise the program’s write could erase all or part of the
mouse cursor. Also, the mouse driver’s cursor-save video buffer would not be
current if the application program wrote to the current mouse cursor
position. Ignoring the mouse during typical animation sequences leaves
mouse trails all over the screen. Fortunately, you do not have to worry about
these details. Theatrix takes care of mouse displays for the game program by
turning the cursor display off and on at strategic times when writing to video
memory.

A Theatrix game program can register for mouse events in several ways. It
can specify functions to be called when the mouse moves and when the
player clicks a mouse button. The functions receive as parameters the
current mouse position at the time of the event. By using these registered
functions, a program can use the mouse to select menu items, press game
buttons, drag game parts around the screen, and so on.

The game program can provide a table of screen regions with associated
mouse cursor shapes. This table tells Theatrix how to change the cursor’s
appearance depending on where the mouse cursor is positioned. You might
use arrow cursors to indicate that a click in that region changes direction, a
finger cursor to indicate that a button can be pressed, and an open hand
cursor to indicate that an object can be picked up.

The table can also include game-dependent functions for Theatrix to call if
the user clicks the mouse while the cursor is in the associated region. These
table entries allow the game to take actions that depend on where the mouse
was when the user clicked. For example, you might open a door, pick up an
object, move closer to a scene, or turn to the right or left based on what item
in the display you are touching with the mouse when you click the button.

Joystick

The standard PC joystick is a poor relation to the high-resolution joystick
devices found in high-end CAD workstations of 10-plus years ago. The PC
joystick is a crude, low-resolution, mostly inaccurate device that is used in
games mainly for direction and motion control.

Flight simulators use the joystick for attitude control because its function
resembles that of the control stick in older aircraft and modern jet fighters.
The name joystick comes from aviation. It is what World War I and
barnstorming pilots called the control lever in their craft. Some PC joystick

31

32 C++ Games Programming

devices resemble the control wheel in modern airplanes and are intended for
more realistic flight simulation, although professional pilots often complain
that PC joysticks are not sensitive enough to simulate true flight conditions.

How well a program works with the joystick depends on how well the
programmer understands the vagaries of the device. The shareware version of
Doom uses the joystick to move the player through the maze. Either those
programmers did not understand the joystick or they did not care much for it
as a controlling device. They built in a wide dead spot at the center of the
stick’s travel, apparently overcompensating for the flutter behavior that some
joysticks display. By the time you get the stick outside the dead spot, the
programmed degree of motion is too fast and you overshoot where you
intended to point. Perhaps that is why serious Doom players (if there could
be such a thing) prefer the keyboard. Other 3-D maze programs make better
use of the joystick.

A program can sense four things from the joystick’s input: the distance
from position zero at the left to a maximum rightmost value on the X axis,
the distance from zero at the top to a maximum bottommost value on the Y
axis, whether button 1 is pressed, and whether button 2 is pressed. The X/Y
readings range from a possible zero/zero at the upper left to device-dependent
maximum values at the lower right. Unlike with the mouse, these
coordinates are unrelated to the screen resolution and do not change when
the video mode changes.

Because of the inherent mechanical and electrical instability of the
joystick design, its readings and sensitivity vary from device to device.
Processor speed is one of the variables.

The crude A/D converter logic in the standard joystick uses a simple RC
circuit that discharges two capacitors, one for each axis, at rates that get
slower the farther away from upper left the stick gets. The stick’s position
adjusts two potentiometers, one for each axis. The potentiometers supply a
variable resistance that controls the rate of discharge of the capacitors. The
circuit is normally charged. The discharge begins when the program writes
any value to the joystick port. The write operation closes a switch and
grounds the positive side of the capacitor, which is connected to an inverter
gate that the program reads as a bit in the joystick port. When the capacitor is
fully discharged, the inverter gate output flips from logic O to 1. By timing the
two discharges, the program can roughly determine the joystick’s distance
from its upper left position.

CHAPTER 3: PC Game Technology

There are several problems with the joystick operation. First, the stick
position value computed by the program is a function of processor speed
and, curiously, the operating system. Presumably, the faster the CPU, the
higher value it counts, but the same hardware running under plain DOS
gives different readings than it does when running in a Windows DOS box.
Table 3.1 shows the ranges reported by the same joystick on different 486
computers and under different operating systems. The table illustrates that
you can’t make any assumptions about the joystick based on the system
you are using.

Table 3.1 Joystick range comparison

Low X/Y High X/Y Center X/Y
CPU Speed/OS Value Value Value
66 MHz/DOS 87 216 130
40 MHz/DOS 3 105 43
33 MHz/DOS 6 224 90
66 MHz/Win DOS Box 45 110 67
40 MHz/Win DOS Box 12 216 94
33 MHz/Win DOS Box 6 110 45

The second problem is that the joystick’s position values are influenced by
the imprecise electrical and mechanical characteristics of the particular
joystick and controller. The upper left resistances, lower right resistances,
and the center resistances depend on potentiometer tolerances; the discharge
rate depends on the capacitor tolerances; the ranges and center position
values depend on mechanical stops built into the joystick.

The third problem is that the center and outer positions are electrically
unstable, delivering values that flutter several increments even when the
stick is motionless.

We can conclude, therefore, that PC joysticks are imprecise and that the
software needs to know about and compensate for that.

Many games calibrate the joystick by having the user move the stick to
the center, the upper left corner, and the lower right corner and press a
button at each position. This action permits the software to adjust itself
closely to the characteristics of the player’s particular joystick.

33

C++ Games Programming

Other programs use a rough self-calibration routine that assumes that the
joystick is centered when the game begins. Its starting position is stored as
the probable center position, double its X and Y values are stored as
approximate lower right positions, and zero/zero is stored as an approximate
upper left position. These values work when you are using the joystick to
indicate rough directional controls. They work well for flight simulator
operations, where the distance from center determines the roll and pitch rate.
Anything more precise than that needs better calibration and probably needs
better hardware.

Theatrix calibrates the joystick and sends button and position messages to
the game program. Theatrix converts the joystick’s values to 0/0 at the
center. A forward stick position is reported as a positive Y value, rear as
negative Y, left as negative X, and right as positive X. Components of the
game program register for joystick button clicks and mouse movements, and
Theatrix sends messages to the registered game functions to report these
events. The program can ask for the extreme values of the X and Y axes,
which depend on the device and operating system, and can adjust itself
accordingly.

Serial Port

Theatrix allows components of a game to register for serial port input
messages. Each message is a byte value transmitted from a remote device
connected to the PC’s serial port. By using this feature, a game can be written
that runs in two-player mode with the players sitting at different computers.

Theatrix does not attempt to encapsulate support for multiple serial ports
at one time. You could implement that feature in your game by instantiating
multiple objects of the serial port class and coordinating the input and output
yourself, bypassing the message system.

The Theatrix serial port server assumes a direct connection of the serial
port. One of the Theatrix utility programs is a modem shell that permits the
players to make the connection through modems before launching the game
executions.

CHAPTER 3: PC Game Technology

Video

A computer program displays words and pictures on the screen by writing
data values into video memory. The video controller translates those data
values into pixels that light up dots of phosphor on the face of the cathode
ray tube. That translation is a function of the video memory contents, the
current video mode, and, in the case of a graphics video mode, the video
palette.

The standard PC video configuration is the Video Graphics Array (VGA).
Early PCs had video controllers with less memory and lower resolution, and
the VGA can emulate those older devices. But the VGA is the mainstream
display device today, and most game programmers target the VGA as a
minimum configuration. Theatrix programs run on VGA-equipped PCs.

Video Memory

Video memory is addressable RAM in conventional memory space (which is
the first megabyte of memory) above the 640KB boundary. VGA graphics
video modes require a minimum of 256KB, and Super VGA (SVGA) modes
can have as many as 4MB, so not all the memory is addressable at the same
time. The program selects banks of memory to address by using the
controller’s status and data registers.

Interpreting controller registers and writing data into video memory is not
usually the concern of the conventional application programmer. The
operating system takes care of doing that. Similarly, the application
programmer is not usually concerned with translating text or graphics
renditions into bit streams that the video controller can translate. These
functions are handled by lower-level drivers. The DOS game programmer,
however, does not have the convenience of an operating system that
understands game displays. The DOS game programmer has to do it all.
Theatrix encapsulates most of that so that you do not have to worry about it.

Video Modes

The VGA supports a number of modes, which determine how the controller
interprets the contents of video memory. When you turn your computer on,
it starts out in a text mode. The data values in video memory are ASCII
characters and display attribute bytes in a 24 x 80 array. The controller

35

36

C++ Games Programming

displays those characters with those attributes on the screen. Each attribute
byte determines the colors and intensity of its associated character byte.

The graphics modes define the screen resolution and the number of
supported colors. The VGA supports several graphics modes, and the SVGA
supports even more. At its lower levels of abstraction, Theatrix permits you
to use most of these graphics video modes. At higher levels of abstraction,
which free the programmer from these details, Theatrix uses the XVGA
mode, which has a 320 x 240 pixel resolution and 256 colors. The XVGA was
nicknamed Mode X by Michael Abrash in Dr. Dobb’s Journal. For a complete
discussion of Mode X and the other graphics video modes, read Abrash’s
book, Zen of Graphics Programming, listed in the Bibliography.

Video Page Buffers

A VGA controller has at least 256KB and maybe more. Depending on the
currently selected video mode, not all of that memory is used to hold the
data being displayed. Under Mode X there are three page buffers of video
memory, each one able to hold an entire screen full of data. At any one time
only one of those pages is the visible page, which contains the display data
that the user sees. The other pages are hidden in the background. Programs
can rapidly set one of the two background pages to be the visible page,
putting the previous visible page in the background. The switch is
instantaneous, so programs typically write updates to a background page and
switch the page to the visible status when the page is updated and ready to be
seen. This technique avoids the annoying flicker that the user might see if
the program were to update the screen directly in the visible page. Theatrix
encapsulates management of the video page buffers for scene changes and
sprite animation.

Bitmapped Graphics Files

A bitmapped graphics file records the pixel values for a picture in a raster
graphics representation. Each dot on the screen is a picture element,
nicknamed pixel. In Mode X there are 320 dots horizontally and 240 dots
vertically. Each dot is represented by an eight-bit byte, and the value, from 0
to 255, represents the pixel’s color taken from the picture’s palette. The file
has header information that identifies the picture’s resolution, number of
colors, color selection palette, and so on.

CHAPTER 3: PC Game Technology 37

Table 3.2 lists the most common bitmapped graphics file formats.

Table 3.2 Bitmapped graphics file formats

BMP Microsoft Windows Bitmap Format

GIF CompusServe Graphics Interchange Format
PCX ZSoft PC Paintbrush Format

TGA AT&T Targa Format

TIFF Aldus Tagged Image File Format

Theatrix uses the .PCX format during a game’s execution, but your
construction tools might produce files in any of several formats. The toolkit
includes a conversion utility that translates between the various formats.

We chose the .PCX format for several reasons. First, virtually every raster
graphics tool for the PC supports the .PCX format. Second, the .PCX format
supports eight bits of color per pixel, consistent with Theatrix’s 256-color
objectives. Third, .PCX is a comparatively simple format, lacking the
complexity and overhead of the more complex formats. Finally, .PCX’s run-
length-encoded (RLE) compression format is not protected by software
patents, and programmers are free to use the .PCX format in any manner.

For a complete discussion of bitmapped graphics file formats, read
Bitmapped Graphics Programming in C++, listed in the Bibliography.

The Palette

Mode X can display 256 different colors at any one time. Those 256 colors
represent a subset of the 256KB colors available on the VGA. Each display
consists of two parts: the display data array and a palette of colors from
which to choose. The display data array consists of eight bits for each pixel
position on the screen. The eight-bit value is offset into the palette, which
contains 256 entries (one for each color that is available). Any given image
can have a palette made up of any 256-color subset of the 256KB possible
colors.

Image construction utility programs, such as paint programs and ray

tracers, determine the palette for the image being constructed. You can easily
wind up with several components of a game that have different and

38

C++ Games Programming

incompatible palettes. The VGA can work with only one palette at a time. If
you superimpose a sprite on a background and if the palettes of the sprite and
the background are incompatible, the sprite’s colors will be wrong. If you use
a system-generated mouse cursor and if the cursor’s palette conflicts with the
current image, the cursor’s color will not be what you expect. It is even
possible for frames of a video clip to have different palettes.

Ray tracers, which are discussed in more detail in Chapter 4, cause the
biggest problem. They generate images from subtle combinations of colors to
achieve their photo-realistic effects of lighting, shading, reflection, refraction,
and diffusion. Two renderings of the same 3-D model with a slight change of
camera angles will surely result in two different palettes. This is no problem
if you are simply changing scenes. The VGA adjusts to new palette
information instantly. But if you are using a common sprite or cursor on the
two scenes, the palettes of those images will conflict with at least one of the
palettes of the scenery.

With all these palette collisions to worry about, you might well wonder
how you can get it all coordinated. The Theatrix toolkit includes utility
programs that process sets of images and normalize all the palettes so that
the pictures display the way you want them to. Chapter 4 discusses the
strategy of palette correction, and Chapter 6 describes the Theatrix tools for
doing that.

Graphics

An old cliché says that a picture is worth a thousand words. True enough,
and unless you are writing one of those text-mode adventure games, you will
involve pictures in your game. Chapter 4 discusses the strategies for building
pictures to depict static scenery and animated characters. Here we are
concerned about designing them and getting our ideas closer to an
implementation. To do that we need to understand the strengths and
limitations of the VGA's ability to display pictures from a technical as well as
an artistic viewpoint.

The background scenery is a 320 by 240, 256-color picture displayed from
a .PCX file. It can come from nearly anywhere. Chapter 4 discusses these
strategies in more detail, but you can build the picture with a paint program
from a 3-D model. You can use a ray tracer to build a photo-realistic picture.

CHAPTER 3: PC Game Technology

You can even use a photograph, print, or painting that you scan into a
PCX file with a flatbed color scanner. Keep in mind, though, that paintings
and photographs are artistic creations and are subject to the laws protecting
intellectual property. If you are going to use the work of others, be sure that
you have the right to do so.

Be careful, also, about what you yourself photograph. You might hold the
copyright to pictures that you take, but if the picture includes people, make
sure that you have their permission to use their images in your published
work. Remember that people not in the public view have certain rights with
respect to privacy, and you must observe those rights or bear the
consequences. The same caution should be shown with the pictures of the
property of others, particularly where business icons or logos are involved. If
you are going to use these things in your game, make sure that a lawyer has
blessed the practice. Neither of the authors of this book is a lawyer, and the
advice we give here should not be interpreted as authoritative legal opinion.
When in doubt, get professional legal advice.

Theatrix does not care about the source of the background file or the
complexity or realism of what it depicts. The library’s performance is not
affected by those parameters. Once you have a .PCX file of the correct
resolution, it’s all the same to Theatrix. The file sizes vary, depending on the
density of the material and the .PCX file’s compression algorithm, but the
software to display the files and, for the most part, the overhead required to
fetch and write them to video memory is about the same. And it is fast.
Theatrix can flip scenes instantaneously.

The characters in a Theatrix game are displayed from libraries of graphics
inserts built with 256 colors but at lower resolutions. The height and width
of the sprites are determined by the resolution of the inserts when compared
to the 320 x 240 pixel resolution of Mode X. You build or render in advance
all the views of the sprite to support the animation frames of its action.

The VGA supports higher resolutions than Mode X does, and the resulting
realism can be better, but performance degrades somewhat. It takes longer to
fetch and display a 640 x 480 picture and longer still for one with a resolution
of 800 x 600. If you make rapid scene changes, you can see the difference at
the higher resolutions on slower machines with slower video cards. It also
takes much more disk space to record those pictures.

Bear in mind that you are building a game. It’s supposed to look like a
game. It’s not necessarily supposed to look like a movie, although some

39

C++ Games Programming

contemporary interactive multimedia games are getting close to that kind
of realism.

Choose an artistic genre in which to display scenery. Be consistent in that
choice. A cartoon-like character wandering around a photo-realistic
moonscape looks more like a cheap TV commercial than it does a game.
Likewise, a shiny, ray-traced robot trekking through a Grandma Moses-like
scene is unconvincing. We can believe in cartoon characters in cartoon
worlds, and we can believe in photo-realistic characters in a photo-realistic
world, but it takes creative energy to effectively mix the two.

Also be consistent in the appearance of different scenes in the same game.
If you jump about from one style to another just because you happen to have
the pictures and it is convenient to use them, your players will be, if not
turned off, then at least confused about the story you are trying to depict.

Some games, such as flight simulators and 3-D maze games, render their
scenery in real time at runtime. They have to because the scene being viewed
is a function of where the player has positioned the viewport, and the game
permits a view from virtually anywhere in the three-dimensional universe. It
would be impossible to compute every possible position and viewing angle
and then render in advance every scene as viewed from every position.

Flight simulators typically use static graphics with animated inserts to
represent the instrument panel. Then they render the outside scenery in real
time by computing the view of each frame from a 3-D model of the scenery
and features. They employ all the computer graphics tricks to provide solid
geometric shapes with surface generation and hidden line removal. The
technique is effective and impressive, but it limits the amount of texture and
shading that the scenery can have. The incidence of buildings is sparse
because the program can compute only so many features during the brief
time it has to render each frame.

Three-dimensional maze games use techniques called ray casting and
texture mapping to compute every frame of an indoor scene. They map the
frames of animated characters over this scenery by choosing from a fixed
number of views and sizing the view in real time to represent the distance of
the character from the player’s view. The result is a dazzling display of rather
fuzzy scenes that suggest, rather than accurately depict, the walls and doors
of the maze as they slide by. Players do not mind, because the action is so fast
that the passing scenery would be a blur anyway. If you hold still long enough
to regard the scenery, something ugly will kill you.

CHAPTER 3: PC Game Technology

Sound

Sound effects dramatically enhance a game’s operation. The Shootout
example on the accompanying CD-ROM illustrates this principle. The game
works as well without the sound effects, but it is much more fun when you
can hear them. Doors open and close, guns fire shots, bodies thump when
they hit the ground, the sheriff’s gun clicks instead of fires when it is empty,
and the citizens applaud when you win the game.

What Is Sound?

Sound occurs when something disturbs the air. The movement of the air
vibrates our eardrums, which send signals to our brains. If a tree falls in the
forest and no one is there to hear it, the air still gets moved around whether
or not anyone or anything is there with ears to interpret it.

Sound can be viewed as a waveform. Push the air one way and the
waveform rises. Pull the air the other way and the waveform drops. Increase
the frequency and the pitch rises. Increase the amplitude and the volume
rises. Mix two different signals and you combine sounds.

Anything sensitive enough to move with the air vibrates in a pattern that
resembles the waveform. If you turn it around and cause the air to vibrate in
the same pattern by duplicating the waveform mechanically or electrically,
you can reproduce the sound.

Recording Sound

Edison recorded and played back sound mechanically. He simulated an
eardrum with a diaphragm at the base of an amplifying horn. At the center of
the diaphragm he positioned a needle. Edison spoke the words of “Mary Had
a Little Lamb” into the horn. His voice moved the air, which vibrated the
horn, which vibrated the diaphragm, which vibrated the needle, which
etched a groovy pattern across a wax cylinder that Edison rotated with a
crank as he spoke. Thus the waveform of Edison’s voice was recorded. Then
he tracked the needle back through the etched pattern’s groove to vibrate the
needle, which vibrated the diaphragm. The horn amplified the vibrations, and
Edison’s recorded poem was reproduced—played back.

41

42 C++ Games Programming

Records and audio tapes are analog devices!. They store their information as
analog signals that represent, as accurately as possible, the waveform of the
original sound. The recording equipment starts with air moving a
microphone’s sensitive diaphragm the same way that Edison did. But from
that point the process is quite different. Instead of mechanically transferring
the vibrations to an etched track, the electronics convert the vibrations into
an analog, amplitude-modulated electrical signal and store the signal as
charged particles of emulsion on magnetic tape. If a vinyl record is to be
made (rare today because of the popularity of compact disks), the master
pressing is made in fundamentally the same way that Edison made his first
recording except that an electrical signal played back from the master tape
vibrates the etching needle.

Digital Recording

The recordings just described are analog recordings. Computers reproduce
sound as digital recordings. They store sound signals as binary strings. Except
for synthesized sound, which uses algorithms to approximate sound
waveforms, computer sound originates as real sound that is recorded
digitally. If Edison had owned a PC with a Sound Blaster, he would have
recorded “Mary Had a Little Lamb” onto a hard disk file as a digital bit
stream.

1 An exception is the digital audio tape (DAT) preferred by most sound engineers today.

CHAPTER 3: PC Game Technology

Sampling

The digital bit stream that records sound in a computer is a sample of the
original analog sound signal waveform. The computer samples the amplitude
of the waveform at fixed intervals. The interval frequency is called the
sampling rate. At each of these intervals, the computer stores a binary value
that represents the amplitude (the height on the waveform) as a signed
integer. The higher the sampling rate, the more accurately the digital bit
stream represents the original audio sound.

Another variable in a bit stream sample is its resolution, which is the
number of bits available for each sample. The more bits you use, the wider
the dynamic range of the signal when it is played back. Eight to 16 bits are
typical. Professional recording equipment uses 16 bits of resolution.
Sixteen-bit sound cards are not unusual on PCs now, but eight-bit cards are
far more common.

The combination of signal length, sampling rate, and resolution
determines how much storage space is needed to record the signal. This value
is an important concern. The game program needs to store the sound clips in
a disk file to distribute with the game, and it needs to load them into RAM to
play them back.

Most game sound effects play back well with a sampling rate of 5,000 to
11,000 and with eight bits of resolution. One thing is certain: You must play
back a sound clip with the same sampling rate and resolution with which it
was recorded. Otherwise the sound is garbled and its duration is wrong.

VOC Files

Theatrix uses the standard Sound Blaster .VOC file format for sound effects.
This format is readily adaptable to the different sound card drivers that
Theatrix supports. The VOC file format assumes an eight-bit sampling
resolution and a variable sampling rate specified by header information in the
data stream.

The format is convenient because it is a standard and because there are
utility programs that convert between .VOC files and the formats of other
kinds of sound files. Theatrix organizes the .VOC files into disk file libraries
of sounds. Each character in a game can have its own library. If different
sprites use different sound effects and voices, you can maintain their sound
clips independently.

43

44

C++ Games Programming

Music

Every game programming book that we have read either ignores the subject
of music or addresses only the technical issues of how to play back a MIDI
file. The authors defer the creation of their music to contributors to their
book, make no effort to explain the process, and suggest that you do the
same. Yet many programmers are musicians, too, and can understand the
creative side of the musical aspects of game construction. We discuss some of
that here, assuming that you have some understanding of musical theory or,
at least, an appreciation of the implications of music in any kind of
entertainment medium.

How important is music to a game? Many arcade games do not use music.
The creators of Myst considered leaving music out of their production.
Fortunately, they reconsidered and applied the additional effort to include
background music in each scene. As you move from place to place in the five
Myst islands, mood music dramatically enhances the visual effect at every
change of scenery. The game would not be nearly as effective without
background music.

Adding background music requires several steps. First, you identify where
in the game the music occurs and what kind of music you want at each
scene. Next, you compose or acquire the music. Then you translate the
music into a format the computer can read and play back. Finally, you
integrate the musical score into the game.

Setting the Mood

Background music sets a mood. Imagine the Lone Ranger without the
William Tell Overture. Ta da dum. Ta da dum, ta da dum dum dum. The two
go together. Rick’s without Sam playing “As Time Goes By” wouldn’t be
Rick’s. When, in Psycho, the corpse of Mrs. Bates spins around in the chair to
face the audience, the effect would not be nearly as scary without the
pulsating, piercing, screaming music.

As in the movies, each scene in a game has a theme, and music can
dramatically reinforce that theme. If the player is deep in the bowels of a dark
cave, the cave music could have an ominous, dank feeling. Eerie, scary music
could accompany a trip through a haunted house. A child’s game might use a
happy tune that the child recognizes, such as “Here We Go 'Round the
Mulberry Bush.”

CHAPTER 3: PC Game Technology

We learn through experience to associate different kinds of music with
certain moods, and thus our mood changes when we hear the music. A
funeral dirge elicits sadness. The Charleston is a happy dance. The blues
make us feel sorry for ourselves. Old-time rock and roll is uplifting. Heavy
metal is mind-numbing. A march evokes rousing feelings of patriotism. Some
music is scary. Some music is romantic.

Some music is foreboding. Music prepares the player for coming events by
foreshadowing a mood. You look at a closed door. Without music, the door is
nothing more than that—a door. Add a low, sustained diminished chord
played on an organ, and you know that something bad will happen if you
open that door. The mood created by the music compels you to either run
away or open the door and accept the worst.

Watch contemporary TV commercials to see how music sets a mood. Sad
music plays quietly. A woman speaks. “I didn’t realize that Sam’s funeral
would set us back six thousand dollars.” The message: Don’t be sad. Buy our
life insurance. A contemporary blues singer sings, “Your true voice,” bending
her notes around in a way to suggest a caring, soulful mother. The message:
We care for you deeply. Come back to our long distance service.

Try not to use music inappropriately. An urban scene of cars, noise, and
street people does not fit with excerpts from the Grand Canyon Suite.
Ragtime would be out of place in a funeral parlor. The 1812 Overture
would not work with a scene of fluffy clouds, flowers, songbirds, and
butterflies. A polka would not particularly enhance a scene set in the
House of Parliament. Watch movies, particularly older ones, to see how
music is used to enhance scenes.

MIDI

Even though music is sustained sound, game programs do not usually use
.VOC sound files for music clips. The storage requirements would be too
restrictive. Music clips are usually longer than sound effects, and they require
a higher sampling rate to prevent the distortion that people don’t notice with
voice and sound effects. Fortunately, you have an alternative, something
called the musical instrument digital interface (MIDI).

Several years ago, the electronic music industry did something that the

computer industry is rarely able to do: It established standard protocols and
formats for data streams of packets that represent musical sounds. All the

C++ Games Programming

industry members uniformly adopted and implemented the MIDI standard in
their products. The effort was collaborative, cooperative, and friendly, and
was undertaken without rivalries or market pressures. The computer
industry could learn a lot from the music industry.

The MIDI protocol was designed to allow various electronic synthesizers
to be connected in a standard way. A synthesizer is a device that produces
musical sounds electronically. Electric pianos, organs, drum machines, and
so on are synthesizers. The synthesizer produces the sound of each note
electronically either with an algorithmic synthesis of the desired instrument
sound or by playing the note from a library of samples.

A sample is a recording of one note made with a musical instrument. The
note is digitized and stored in a sample library. Sample libraries usually have
several versions of each note for each instrument, reflecting various attacks,
dynamics, and so on.

The MIDI protocol specifies digital packets that tell synthesizers what
notes to play, how long to sustain them, and other variables such as the level
of attack to apply when the note is first sounded, the pressure to apply while
the note sustains, and so on.

A stream of MIDI packets tells one or more synthesizers how to play a
song. A MIDI stream is the electronic equivalent of a player piano roll but
with much more potential.

You can create MIDI packet streams in real time by playing music on a
synthesizer (typically a keyboard). The synthesizer translates the notes you
play into MIDI packets and transmits a stream of packets through the
synthesizer’s MIDI output port.

Synthesizers and sequencers (discussed soon) read MIDI streams into their
MIDI input ports and play the notes from the stream. MIDI synthesizers can
be connected in series so that you have several synthesizers interpreting and
playing from the same stream.

Each MIDI note packet specifies one of 16 channels. Each of the
synthesizers in the series typically processes the packets addressed to only
one of the channels?.

21t is not uncommon, though, for a MIDI instrument to incorporate more than one instrument
device. Electric pianos often come equipped with integrated drum machines and sometimes with
a complete set of 128 instrument patches.

CHAPTER 3: PC Game Technology 47

A sequencer is a device that can read files of MIDI data and transmit the
packets to the instruments. A sequencer can also record MIDI files by reading
the notes being played on a MIDI synthesizer. You can record the notes from
each synthesizer independently, adding each new channel to the channels
already laid down. In this way one person can independently record all the
instruments of an entire orchestral arrangement.3 Each of the 16 channels in
a sequencer is assigned a unique instrument voice selected from a standard
table of 128 instruments. The sound assigned to an instrument is called its
patch.

With a sequencer you can make corrections and modifications to the notes
in a MIDI file. This permits a sequencer programmer to touch up a
performance after it has been originally laid down. You can also change the
patches that have been assigned to selected instruments and change the
instrument voices assigned to selected channels.

Contemporary PC sound cards have all the hardware necessary to support-
sequencing. They have MIDI input and output ports, and they can produce
the sounds of all 128 of the standard patches. This means that you need only
a PC, a good sound card, speakers, a MIDI keyboard, and a sequencer program
to record and play back MIDI files. Furthermore, all that the game player
needs is a PC with a sound card and speakers to play your game and hear the
background music.

Composing Music

Several of the example games on the included CD-ROM have original songs
composed for this project or adapted from other original compositions from
the author’s portfolio. Three of them were composed extemporaneously at
the keyboard by using a sequencer program to capture the MIDI data. You
can listen to them in the Town demonstration game on the CD-ROM.

Two of the extemporaneous songs have no structure and are meant to
imply a mood. When you get close to the church door in the game, you hear
what sounds like a funeral processional played on a church organ. This song
consists of random chords played in slow succession with an occasional but

3A joke among musicians tells about the studio musician who showed up at work for a recording
session. To his surprise, a full, 40-piece orchestra was already there getting ready for the session.
He looked at them all and said, “I hope you people realize that you're putting three sequencer
operators out of work.”

48

C++ Games Programming

mostly unintentional harmonic resolution. We dubbed another track with a
constantly repeated chime to suggest the church bell ringing mournfully in
the background.

The second formless song plays at the front of the brick house. It uses a
Hammond organ voice and is meant to suggest something ominous. The
song consists mainly of a progression of minor and diminished chords,
although anyone could get the same effect with a random pattern of chords of
three and four unrelated notes each.

The third extemporaneous song is a ragtime improvisation on a common
eight-bar chord progression (A7-D7-G7-C) repeated twice. This song plays
during the video clip sequence of the Town game and is the background
music for the street scene in the Shootout game. One of the benefits of MIDI
is that musicians can produce music beyond their own technical abilities. By
using a sequencer program, you can record the stride style of the ragtime
piece in two passes at a slower tempo. One pass provides the octave-chord
pattern of the left hand, which you can play with two hands in the first pass.
Then you can overdub the right hand patterns in the second pass. This
technique is how intricate player piano rolls of long ago were often made.

Even if you do not play the piano, you can transcribe music manually into
a sequencer program by reading the score and using the manual note entry
features of the program. Most of the songs that you download from on-line
services were built that way. The result is usually a mechanical effect with
no emotion or human interpretation built into the performance.

Acquiring Music

Not every programmer possesses the musical ear or skills to build an
effective musical score for a game program. Likewise, not every skilled
musician knows how to get the best effect from a MIDI system. Sometimes
you have to look elsewhere for what you need. Locating someone who can
get the job done might not be as difficult as you think.

To start with, you can probably find professional MIDI composers and
scorers in your home town. Look in the Yellow Pages for recording studios
and audio technicians. Call around. You will find someone who has the skill
and equipment to build effective MIDI files. Be prepared to pay dearly for this
service, particularly if you want original compositions.

CHAPTER 3: PC Game Technology 49

Amateur musicians are plentiful, too, and you might be able to find
someone who is willing to help you in exchange for a royalty arrangement or
perhaps even for the exposure of an acknowledgment in your credits.

Be careful about downloading and using MIDI files from on-line services
and the Internet. There are plenty of such files, but the issues about who
owns the intellectual rights to the compositions, the arrangements, and the
files themselves are rarely clear. The CompuServe Information Service
recently removed many of the MIDI files from its libraries and suspended
accepting any more uploads of MIDI files because of complaints that
distribution of the files might violate copyright law.

Public domain songs are usually a safe way to go if you cannot compose
original music yourself or if you cannot afford the services of a composer.
Most classical compositions, hymns, and old traditional folk songs are in the
public domain.

Use extreme caution with respect to public domain material. Make sure
that you know the status of anything you use. You wouldn’t want to wind up
in court. Make no assumptions about anything, and do your research. Not
everything that is old is necessarily in the public domain. For example, in the
early 1950s the copyright was about to expire on Debussy’s “Claire de Lune.”
To retain the copyright for an additional period, the beneficiaries of Debussy’s
estate had lyrics added to the melody. The result was an abomination called
“Moonlight Love.” The popular crooner Perry Como, in an uncharacteristic
lapse of taste, recorded the song.

Once again, we are not lawyers. Ask one if you are not sure.

Recording Music

If you know how to use a MIDI keyboard, you can use a sequencer program
to enter musical tracks into your computer and create a MIDI file. Once
everything is connected and the program is running, you can begin to
construct your song one channel at a time. You choose a channel and assign
an instrument to the channel from the standard instrument table. By
convention, channel 10 is assigned to the drum sounds, and specific drum
sounds—cymbals, snares, bass drums, wood blocks, and so on—are assigned
to the notes of the scale.

50

C++ Games Programming

Some sequencer programs allow you to select from a collection of musical
styles. The sequencer adds drum machine patterns to the song in keeping
with the style—bossa nova, swing, rock, and so on—that you have chosen.

While you record a new channel, the sequencer plays back the existing
channels so that you can stay synchronized with the song.

Most sequencers allow you to quantize a channel after you have entered
the notes. It is impossible for human beings to accurately play precise
sixteenth, eighth, quarter, half, and whole notes, no matter how well they
read music. The sequencer captures exactly what you play, and the musical
score, if you were to print it out, would be unreadable due to the many thirty-
second and sixty-fourth notes that represented what you really played. The
quantizer normalizes those notes to the resolution that you specify.

A sequencer can transpose a song, which changes the key signature in
which the song is played. Perhaps you can play only in the keys of C, F, and
G,—not uncommon among amateur pianists—but the song sounds better or
better conveys the mood in a different key. You can transpose the song into
any key at all after you have it programmed.

Adding the Musical Score to the Game

A Theatrix game program plays music by using the MIDPAK library, as
described in Chapter 4. The library includes a utility that puts MIDI files into
a collection that Theatrix treats as a score. The game program instantiates an
object whose purpose is to play selected songs from the score on demand.
That object’s class encapsulates the interface to the MIDPAK library.

32 Bits and Protected Mode

Theatrix, as published in this book, is not a 32-bit protected mode library. If
you plan to build huge game programs with enormous collections of media
clips, you might need the 32-bit flat memory model provided by DOS
extenders.

4Many professional lounge pianists would love to have that feature built into their pianos to
support the amateur singers who hang around the bar hoping for a moment in the spotlight.

CHAPTER 3: PC Game Technology

One of the reasons that we did not start with a 32-bit model was that
Fastgraph, the graphics library that we used, does not have a 32-bit version
released as shareware. It does, however, support 32-bit development in its
commercial version.

To convert Theatrix to a protected mode library, you must modify several
things. First, you must look at all usages of the int data type to see whether
they need to be changed to short int to preserve their 16-bit type size. Second,
you should eliminate the uses of extended memory in the Media class for
storing sound and graphics clips. Third, the few places where the library
attaches interrupt vectors must be examined and converted to the
conventions of whichever DOS extender is to be used.

For the time being, Theatrix works only with the Borland C++ compiler
because that compiler implements the RTTI extensions to standard C++.
Therefore, you probably want to use Borland’s Power Pack as a DOS extender
to convert to 32-bit code.

If this project is well received, we will publish a second edition that
implements the DOS version of Theatrix as a 32-bit, protected mode library.

These issues are, of course, irrelevant to the Win32 version now under
development.

51

Game-Building
Strategies

“Show me a good loser and I'll show you a loser.”
Common paraphrase of a Knute Rockne quotation

This chapter shows you how to build the components of a game by using the
tools in the Theatrix toolset. You learn about the application of those tools in
the construction of your game. We will describe the procedures and identify
the tools that we use for each step of the design process. The tools are
described in Chapters 6 and 11 and in the documentation files that
accompany them. In this chapter you will learn about these subjects:

o Scenery
Animation

Video clips
Palette correction

Sound effects

¢ 0 ¢ 0 9

Music

53

54 C++ Games Programming

Scenery

Scenery is the background of a scene in a game. You build scenery by
building a bitmapped graphics file. There are three strategies: You can scan in
a scene from an existing picture, manually design the scenery by using a
paint program, or render the scenery by ray-tracing a 3-D model of the scene.
We discuss each of these strategies in this chapter.

Scanning

We've never seen a game in which the background scenery was scanned in
from a photograph or a print of a painting, but there is no reason why you
could not do it. Imagine a game that uses photos of Mount Rushmore, the
Grand Canyon, or the Eiffel Tower as its background.

Suppose that you have a print of an old painting or a photograph of an
appropriate scene. Perhaps you went to the city or country on a vacation,
took some photos, and had them enlarged.

First review the discussions in Chapter 3 about intellectual property
rights. Then proceed.

To use these pictures as Theatrix scenery, you need a flatbed color scanner
and software to scan the pictures and translate them into .PCX files of 320 x
240 pixels with 256 colors. The translation is simple enough with the tools in
the Theatrix toolkit. Alchemy and NeoPaint are discussed later in this
chapter and in Chapter 11, and both of these packages can translate
bitmapped file formats.

As an alternative to scanning, you can use the services of companies that
develop your film as diskette images to display on your computer. The local

CHAPTER 4: Game Building Strategies

photo shop should be able to refer you to the right companies. If you can get
that picture display in a Windows application, for example, you can use the
Clipboard to import it into Windows Paint or another image program to
convert it to 256-color .PCX format.

Painting with NeoPaint

The easiest way to build a background scene is to paint one using a paint
program. The Theatrix toolkit includes NeoPaint, a full-featured shareware
DOS paint program.

If you like NeoPaint and intend to use it, you must register the product.
Text files on the CD-ROM along with the program files explain how to
register.

Figure 4.1, the scenery for the Shootout game, was created with NeoPaint.

(You can see a full-color rendering of this scene in the color insert pages at
the middle of the book.)

A

{H

it

Figure 4.1 Shootout background scenery

Shootout’s scenery has an arcade look, which is consistent with the game
that it supports. With the exception of the mountains on the horizon and the
cloud in the sky—which we drew manually with the pen tool—the picture
was built from standard NeoPaint primitive shapes and patterns. The

55

56 C++ Games Programming

buildings, windows, and doors are rectangles. The sidewalk and street are
simple lines. The bricks and shingles and the textured chimney pipe on the
jail are standard NeoPaint fill patterns. The lettering is from the standard
NeoPaint fonts. We used the Fill tool to color the sky, mountains, sidewalk,
street, and scoreboard.

It took no longer than five minutes with NeoPaint to draw this scene.
Once it was drawn, we zoomed in on various points of the picture and moved
the cursor to record the coordinates of critical locations. For example, the
characters in the game appear in windows, from behind buildings, and from
behind doors. The game program must know specifically where to clip the
images as they come into view. It must also know where the sidewalk is for
the bodies to fall and where to superimpose the open door images. The digit
positions where the score is displayed are also important.

3-D Modeling with MORAY

The third option for creating scenery results in photo-realistic scenery but
with a computer-rendered look. The scenes don’t always look like actual
photographs (although they could), but they have realistic features based on
textures, shadows, reflections, refraction, diffusion, and so on.

First you build a 3-D model of the scene, and then you render ray-traced
images of the scene taken from various views. We'll discuss the first step,
creating the model, first.

A 3-D model is a computer representation of planes and objects organized
to resemble something real. You build the model with a 3-D modeling tool.
The Theatrix toolkit includes MORAY, a DOS shareware 3-D modeler that
produces files in the POV-Ray source code format. POV-Ray, the tool used in
the second step of this procedure, is discussed later in this chapter.

If you like MORAY and intend to use it, you must register the product.
The author updates MORAY frequently. As this book goes to press, there is a
new beta with many new features. We encourage you to download and
register the new version when it is available. The MORAY documentation on
the CD-ROM explains how to register, get support, and get new versions.

MORAY resembles a typical CAD system in that it allows you to build a
wire-frame 3-D model by manipulating views from three coordinates and
displaying an isometric view. MORAY is not as intuitive a program as
NeoPaint because MORAY assumes that you have a basic understanding of

CHAPTER 4: Game Building Strategies 57

3-D models and the capabilities of POV-Ray. But with practice, a designer can
do impressive work with MORAY.

Figure 4.2 shows the MORAY screen with a model of a Jeep that we built
from standard shapes.

Figure 4.2 MORAY 3-D model of a Jeep

The Jeep model is complex, but it is only one element in a scene. The Town
example game on the CD-ROM has scenery that includes several buildings,
and each building is a separate model created from common component
models. For example, we built one house frame, one door, one window, one
dormer, and so on, and then built several house models from those MORAY
components. Figure 4.3 shows one of the house models loaded into MORAY'’s
design screen.

To complete the scene, we built a town model with the three houses, a
church, two streets, some trees, and two copies of the Jeep. Figure 4.4 shows
the town model loaded into MORAY'’s design screen.

You add textures and lighting to a model from within MORAY, but it does
not render the picture itself. For that, it launches POV-Ray. You can make
sample renderings as you go along, and you should do that at a low
resolution. Rendering is a time-consuming operation. Eventually, however,
you want to render the actual scenes for the game.

58

C++ Games Programming

Figure 4.4 MORAY 3-D model of a town

CHAPTER 4: Game Building Strategies

Ray Tracing with POV-Ray

The second step in producing scenery from a 3-D model is to render the
various scenes from the POV-Ray source code that MORAY produces.
MORAY exports its model to POV-Ray source code. POV-Ray is a ray tracer.
It reads files of ASCII source code and translates the statements in the source
code into an image.

POV-Ray is a freely available program that anyone can download from
CompuServe and the Internet. There are no fees for its use, and you are free
to render images and distribute those images without obligation.

POV-Ray source code statements specify shapes, textures, planes, lighting,
camera position, and so on, and POV-Ray uses those data to compute every
pixel of the rendered image. POV-Ray writes rendered images to files in the
.TGA bitmapped graphics format.

The POV-Ray source code includes the camera positions and lighting that
you established with MORAY; those values, as written by MORAY, define
only one scene. Even though the game will have several scenes, only one
POV-Ray source code file is needed. Each scene’s source code file differs only
with respect to its camera position. Every thing else is the same.

First you decide how many background scenes the game uses from this
model. The Town game, for example, uses 11 different scenes built from the
same model. To build those scenes, we used MORAY to determine the ideal
camera locations, directions, and apertures for each scene. This procedure
involved loading the model into POV-Ray and moving the camera until the
scene looked right in the isometric view. Then we wrote down the camera
position for each scene. Next, we used a text editor to create alternative
camera positions in the source code file, but we commented out all the
settings except one. Listing 4.1 shows part of the camera statement in the
TOWN.POV file. This example assumes that only three scenes are used
instead of the actual 11, but it illustrates the point.

59

60 C++ Games Programming

Listing 4.1 TOWN.POV, camera statement

camera){ // Camera Camera0l

location < 0.000, -10.000, 1.600> // TOWNO1
// location < 0.000, -24.500, 1.600> // TOWNO2
/! location < 0,000, -24.500, 1.600> // TOWNO3

direction <0.0, 050,510 // A1l scenes use these values
sky 0.0, 0.0, .1.0> g y % . .
up 0.0, 0:0::4.1,0 e o o " =
right 13333, <0.0;°0.0> {20 & 2 5 ;

Took_at < 0.000, -55.000, 1.600> // TOWNO1
/1 look_at < 0.000, -55.000, 1.600> // TOWNO2
/1 look_at <-10.000, -24.500, 1.600> // TOWNO3
}

The camera statement declares the camera parameters for the scene. The
location statement specifies coordinates in the model where the camera is
positioned. The Jook_at statement specifies the point in the model where the
camera is focused. These are the statements you will change for each
rendering. In this example, all the statements except for TOWNO!1 are
commented out. After TOWNO1 was rendered, we commented out its
statements, uncommented the statements for TOWNO02, and rendered the
scene for TOWNO2. We repeated this procedure until all 11 scenes for the
Town game were rendered into .TGA bitmapped graphics files.

POV-Ray source code looks a lot like C++ source code, so programmers are
comfortable with it. Some programmers and modelers work directly with the
source code rather than use MORAY. Most people, however, prefer to work in
a visual medium rather than use the abstract expression of source code.

An advantage of this approach is that you do not need to be concerned
with perspective when you design scenery the way you would if you hand-
painted every scene. If you build a set that has objects whose relative sizes
are consistent with one another, then the ray-tracer will properly render the
scene with correct perspective. All you have to do is position the camera.

CHAPTER 4: Game Building Strategies

Converting Bitmapped Graphics Files with Alchemy

POV-Ray’s output is in the .TGA bitmapped graphics format. To use the
pictures as scenery in a Theatrix game, you have to convert them to .PCX
format. For that purpose we use a shareware program named Alchemy.

If you like Alchemy and intend to use it, you must register the product.
Text files included on the CD-ROM along with the program files explain how
to register.

Alchemy reads bitmapped graphics files and translates them to other
bitmapped graphics file images. We use it to build eight-bit .PCX files from
the .TGA files that POV-Ray produces.

Figure 4.5 shows TOWNO1.PCX as POV-Ray rendered the scene and as
Alchemy converted the .TGA file into the .PCX format.

Figure 4.5 TOWNO1.PCX, a rendered scene

Before the .PCX files for the game’s scenery can be integrated into the game,
you must normalize the palettes for all the graphical elements. That
procedure is described in this chapter in the section titled Palette Correction.

61

¥

62 C++ Games Programming

Sprites

Sprites are the characters in your game. As with scenery, you build sprites in
one of three ways depending on the look you want. You can use NeoPaint to
build sprites, you can use MORAY to build a 3-D model and POV-Ray to
render sprite images, or you can make photographs of actual models, all of
which create .PCX files with sprite images.

Before these .PCX images can be integrated into the game program, you
must normalize their palettes with the other graphical elements in the game.
This procedure is described in this chapter in the section titled “Palette
Correction.”

Painting Sprites

Figure 4.6 is the skating figure from the Skater game as built with NeoPaint.

Figure 4.6 A skating sprite

Sprites such as the skater have an arcade, cartoon look. In the enlarged figure,
you can see all the jags and increments. With more work, we could have
made this sprite look better. By using different color tones, you can suggest
form, shading, and texture. This sprite is small, though, and its movement is
fast. Much of the detailed work would be lost in the motion.

CHAPTER 4: Game Building Strategies 63

3-D Modeled Sprites

When the sprite in Figure 4.6 is displayed in its actual size and moving on the
screen, the effect is more realistic, although not as realistic as ray-traced
sprites (see Figure 4.7).

The sprites in Figure 4.7 were built from MORAY 3-D models and
rendered with POV-Ray. The only difference between the sprites in Figure 4.6
and those in Figure 4.7 is the technique used to create the .PCX files.

Figure 4.7 Ray-traced sprites

Using Real Models

For this approach, you need more equipment: a good camera with lenses and
filters, a tripod, and good color-corrected lighting. You also need a studio
environment where you can photograph the model in various poses against a
solid background with minimal ambient light interference.

C++ Games Programming

You make a snapshot of every pose of the sprite in its animated role. (See
the “Animation” section.) Then, as with photographed scenery, you translate
those photographs into .PCX files with a scanner or by using a diskette
medium developing service.

What can you use for models? Toys are good. You may use anything that
isn’t copyrighted. This could be a problem. A game featuring Ken and Barbie
is bound to get the attention of a lawyer or two at the Mattel Corporation.
Almost every toy is protected by copyright law, and yet toys provide the best
source for game models.

You might be able to alter a toy in such a way that it no longer resembles
the original. For example, costumes and makeup could help you turn GI Joe
into a drag Dracula. For vehicle sprites, you could build and drastically
customize plastic models that you buy at the hobby shop, perhaps using
components from several models to create a hybrid. There should be no
problem using models of military aircraft and commercial automobiles, but
models of the StarShip Enterprise or Han Solo’s space junker are off limits—
unless you get written permission from the copyright holders, of course (fat
chance).

The best approach is to create something original. If you can sculpt or sew
creatively, you can make models of anything you like. A pleasant afternoon
spent watching The Nightmare before Christmas on your VCR will give you
ideas of what can be done with original models.

Whatever you use for a model, it must be able to maintain a rigid
pose long enough for you to photograph it. To support animated sequences, it
should permit small changes in its appendages. You might have to suspend it
from a wire or mount it on a black shaft to get the pose you want. Figure 4.8
is a photographed sprite.

Figure 4.8 A photographed sprite

CHAPTER 4: Game Building Strategies

Animation

Animation is where the action is. To add action to a game, you make a sprite
move around the screen and do interesting things. Whether the sprite is a
spaceship or a cowboy, a street fighter or an ice skater, the underlying
principle is the same: Animation is the product of showing a sequence of
frames, with each frame representing the next increment of motion in the
sequence. The motion is an illusion. Nothing really moves. Every picture
that we see is a still frame. But when the frames are shown in rapid
succession, our brains are tricked into thinking that we are seeing motion.

Motion: One Frame at a Time

Figure 4.9 shows five successive frames that, when shown in rapid
succession, make the sheriff in the Shootout game seem to be walking. The
sequence of five frames repeats until the game program wants the sheriff to
do something other than walk to the right, at which point the program
changes to a different sequence of frames. Each repetition of the five frames
reverses the order in which the frames are shown so that the complete walk
sequence is an eight-frame sequence as follows: 1-2-3-4-5-4-3-2. Then the
sequence repeats itself.

Figure 4.9 The sheriff's animated frames

Prove it to yourself. Make several copies of Figure 4.9 on a copier. Cut the
images into uniform rectangles, stack them up in the sequence we just
described, and staple them together at one of the edges. Now you have one of
those flip comic books from the 1950s. Flip through the pages and watch the
sheriff take a walk.

65

66 C++ Games Programming

We drew the five pictures of the sheriff with NeoPaint. We started by
drawing the first picture. Then, to build the second frame, we copied the first
and modified it so that the swinging left arm was closer to the body and the
two legs came closer together. In the third frame, we made the arm and legs
straight down. The legs of frames four and five are duplicates of those in
frames two and one, except that we changed the line that defines which leg is
closer to the front of the scene.

There are several other sequences in the game. One sequence has the
sheriff walking in the opposite direction. To build that sequence, we used
NeoPaint to reverse the frame images of frames five through one. Because the
sheriff carries only one gun, we erased the gun and holster from each of the
frames in the right-walking sequence, and we put a badge on the left side of
his chest.

Other sequences depict the sheriff drawing and shooting in four directions,
reloading his gun, and getting shot from both directions.

Each sprite has its own frames and its own update frequency. The sheriff
gets updated every two clock ticks, or approximately nine times per second,
so it takes about one second for the sheriff to start out with his left foot
forward and take two steps ending with his left foot forward.

Plotting the Two-Dimensional Coordinates

The screen is a two-dimensional plane with an X coordinate and a Y
coordinate. The coordinate ranges are the same as the resolution of the video
mode. Mode X games have X coordinates of 0 to 319 horizontally and Y
coordinates of O to 239 vertically.

As a game program displays the frames of an animated sprite, the program
must also provide the screen coordinates where the frame is to be displayed.
The Theatrix coordinate system uses 0/0 as the upper left coordinate and
319/239 as the lower right coordinate. Sprite frame positions on the screen
are assigned according to where the upper left corner of the sprite image is
positioned, even though that point might be transparent. (See “The
Transparent Regions of a Sprite” later in this chapter.) Therefore, if the sprite
moves around the screen, the game program computes the path and provides
the correct coordinates for the upper left corner of each frame.

CHAPTER 4: Game Building Strategies

A Theatrix game may be computing frames and frame positions for many
sprites for each full-screen display, so the action on the screen can be
complex and the demands on the CPU can be considerable.

Smooth Animation

The sheriff in Figure 4.9 walks along the street shown in Figure 4.1. The
scenery remains static and the sheriff walks. Animating a sprite consists of
telling the video system where in the two-dimensional coordinate system
to paint each frame. The sheriff moves from left to right during this
sequence. To make the walk believable, we plot each position in the first
five frames of the eight-frame sequence so that the toe of the sheriff's left
boot is always in the same X/Y coordinate on the screen. For frames six,
seven, and eight and frame one of the next sequence, the toe of the right
boot is held in the same X/Y coordinate. This procedure gives the sheriff’s
walk a smooth, natural appearance.!

Z-Order

When a game has more than one sprite and the sprites’ paths cross, the game
must display the intersecting sprites so that the one closer to the player
passes in front of the one closer to the background. This relationship between
sprite positions is called their Z-order, because it reflects each sprite’s
location in the Z axis of a pseudo three-dimensional coordinate system.
However, instead of being a scalar as in a true three-dimensional graphical
system, the Z axis is represented by the positional relationship of the game’s
components. The background is at the lowest (most distant from the player)
position in the Z-order, and the sprites are at various Z-order positions
toward the front.

There are no integer Z values analagous to X and Y values. Instead,
Theatrix maintains a list of sprites. The Z-order of a sprite depends on its
position in the list relative to the other sprites. A sprite’s initial position in
the list depends on the order in which the game program instantiates the
sprite object. The last sprite object instantiated has the nearest Z-order.
Figure 4.10 is a screen shot of the Skater game, which uses Z-ordering to
control sprite placement.

Un Tricks of the Game-Programming Gurus (see the Bibliography), Andre LaMothe calls this
technique “animotion.”

67

68 C++ Games Programming

Figure 4.10 Z-order

The skater in Figure 4.10 skates a figure eight around the two stationary
sprites. At first the skater is foremost in the Z-order because he is in front of
the other two sprites. When he makes his first turn to go between the other
two, his Z-order changes to put him in front of the rearward sprite and behind
the forward sprite. When he goes behind the rearward sprite, his Z-order
changes to put him behind both of the other sprites.

A Theatrix game program tells Theatrix to change a sprite’s Z-order in one
of three ways: by putting the sprite at the rearmost Z-order, at the
forwardmost Z-order, or behind the Z-order of a specified other sprite.
Theatrix takes care of the rest.

Perspective

Because Theatrix is not a true 3-D graphical system, you have to manage
certain aspects of the 3-D effect yourself. For example, as the skater moves
around the figure eight in Figure 4.10, the program computes the coordinates
where the skater displays. To suggest a third dimension, the game moves the
skater up the Y axis when the skater is skating away from the player and
down the Y axis when the skater is skating toward the player.

CHAPTER 4: Game Building Strategies

As objects get farther into the distance they appear to get smaller. That
illusion is due to perspective. Observe that the rearmost stationary sprite is
smaller than the forward one, which is smaller than the skater. When the
skater is between the two sprites, then, it should be bigger than the one at
the rear but smaller than the one at the front.

There are algorithms to shrink and expand graphical images to support
perspective in real time, but we do not need to use them for the kinds of
games that we build with Theatrix. Because animation is a function of
selecting the correct frame, proper perspective is a matter of painting or
rendering enough frames to display the sprite at whatever Z-order locations
the game allows it to occupy. If you are rendering or photographing sprites,
you must position the real or virtual camera far enough away to capture each
frame. If you are painting the sprites with NeoPaint, you should paint the
first set of frames in their largest configuration. Then, using the Scale
command you can make smaller and smaller copies of the frames for the
more distant Z-order images. Scaling pictures down sometimes loses critical
pixels from the details, so you should keep an eye on the results and touch
them up when necessary. Figure 4.11 shows the skater at its farthest location
away from the player.

Figure 4.11 Sprite perspective

69

70

C++ Games Programming

The Transparent Regions of a Sprite

Sprite images are 256-color rectangular .PCX files of a size appropriate to the
sprite’s role and position on the screen. No matter which technique you use
to build sprites, you must deal with the issue of transparency the same way.
Every sprite image has regions that must be transparent to let the background
show through. For example, all the space around the outer edges of the sprite
and to the borders of its image rectangle must be transparent. If the sprite has
holes, you have to let the background show through them, too.

Transparent regions are marked by color zero—that is, each pixel in a
transparent region must have a palette offset value equal to zero. It does not
matter which actual color is assigned to color zero in the palette—color zero
is the transparent color when Theatrix displays the sprite. Color zero is
usually solid black.

Black backgrounds are easy to make when you use NeoPaint or POV-Ray
to build sprite images. With NeoPaint, you start out with a white background
because it’s easier to see what you’re painting that way. When you are
finished, you use the Fill tool to replace the white background with black.
You can still have black elements in the sprite’s image by assigning black to a
nonzero palette offset.

When rendering POV-Ray sprites, don’t provide any background objects
such as the sky, walls, and floors. The background will be rendered all black.

Creating transparent regions from photographed and scanned sprites is
more difficult but still possible. Even though you use a solid black
background in the photo session, chances are that some stray ambient light
source will create subtle textures that are not completely black. To do some
touchup, load the .PCX files into NeoPaint and use the Eraser tool to
change rough areas to all black. Then zoom in and touch up the remaining
pixels.

Sometimes there are points of solid black in the image that you do not
want to be transparent. They show up as dots of background bleeding
through when you run the game. This can happen with rendered and
photographed sprites. You have better control over colors when you
manually paint the sprite, but it can still happen if you make a mistake. To
correct for these unintended holes, load the offending frame into NeoPaint
and manually change the holes from color zero to another color in the
palette that is black.

CHAPTER 4: Game Building Strategies 71

How Animation Works in Theatrix

Theatrix manages the animation of a large number of sprites against a
common background. Follow along with Figure 4.12 as we explain how it
works.

Hidden Page Active Page Uisible Page

- e
44

Image Library:

o P

Figure 4.12 Animation

When a scene in the game begins, Theatrix saves the scene’s background
scenery image in one of two hidden page buffers and designates that buffer as
the permanently hidden page. Remember from Chapter 3 that Mode X has
one visible page and two hidden pages. The permanently hidden page buffer
retains the scenery image unmodified for the duration of the scene. Theatrix
copies the same scene into the visible page and the other hidden page—

72

C++ Games Programming

which it designates the active page—and makes sure that they are different
physical page buffers. So, to begin, all three pages have the same image, that
of the background scenery, and one is the hidden page, one is the active page,
and one is the visible page.

As the animation proceeds, the visible page contains what the player is
looking at, the active page is where Theatrix makes its updates, and the
hidden page remains constant with only the scenery in it. Step 1 in Figure
4.12 reflects that condition.

The scene consists of scenery and a list of sprites. Each sprite is an object
instantiated for the scene. Each sprite registers for a refresh rate based on the
18.2/second ticks of the clock. The scene is actually refreshed once every
tick, but the sprites get an opportunity to specify how often Theatrix asks
them to update their frame image and position.

On each tick of the clock, Theatrix tests each visible sprite in the order
that it appears in the scene’s Z-order list. If the sprite’s refresh rate has gone
by, Theatrix calls the sprite to have it specify its frame image and screen
coordinates. The sprite determines from its circumstances in the game
whether there are to be any changes in its frame image and position and posts
these changes to itself.

Now let’s look at step 2 of Figure 4.12. Immediately following the image
and position posting for each sprite, Theatrix copies the sprite’s posted image
from a resident sprite image library to the active page at the sprite’s posted
position. The active page is not visible during this process. At the end of the
loop, the active page contains the screen images for all visible sprites
superimposed on the scenery. This full-screen image represents what is to be
viewed for the next frame in the total animation of the scene.

In step 3 of Figure 4.12, Theatrix swaps the active page with the visible
page, and the player is now looking at the current frame for the game.

In step 4 of Figure 4.12, to prepare for the next frame, Theatrix iterates
through the sprites again and erases their previous images from the active
page by copying the positions they previously occupied from the static
hidden page into the active page.

This four-step procedure permits each sprite to independently specify its
next frame and its position based on whatever intelligence you, the
programmer, build into the sprite’s class. Usually, a sprite will maintain a
mode data item that tells it what its current circumstances are. Other parts

CHAPTER 4: Game Building Strategies

of the program—other sprites, perhaps—can cause the sprite to modify its
mode variable. This variable, which you build into the sprite’s class, is the
sprite’s insight into what it should do next. When Theatrix calls upon the
sprite to update its image and position, the sprite uses its mode variable to
determine what to do.

Several sprites in a scene can be modifying their images and positions
independently of one another, and you can have completely random sprite
movements throughout the game. They can watch one another and react
accordingly. For example, when the sheriff in the Shootout game gets within
shooting range of an outlaw, that outlaw takes a shot at the sheriff.

Mouse Cursors

Theatrix supports a small set of mouse cursors. The usual default arrow
points up and left. Theatrix adds hands that point up, down, right, and left
and block arrows that point toward the four corners of the screen. Figure 4.13
shows the Theatrix mouse cursors.

> d A

> §

Figure 4.13 Theatrix mouse cursors

A game program that uses these cursors can specify any of these standard
shapes, or it can use custom cursor shapes that you build with NeoPaint. A
cursor is a color graphical picture similar to a sprite except that cursors are
always 16 x 16 pixels. When used in a game, a cursor must also specify a hot
spot, which is the relative pixel position of the cursor’s pointer.

73 ¢

74

C++ Games Programming

To use a custom cursor, you first build it with NeoPaint. Create a new file
with 256 colors and a custom resolution of 16 x 16. That’s a tiny picture, and
you will have to build your cursor by zooming in and setting each pixel’s
color individually. Set the transparent parts of the cursor to solid black.

After the cursor’s .PCX file is finished, you must translate its color
representation into a C++ source code file that your game makefile compiles
and links. The Theatrix toolkit includes a utility program named GMICE
that reads one or more cursor .PCX files and generates a file of source code
that you compile and link with your program. The GMICE program includes
a table of hot spots that it selects from based on the first two characters of the
PCX file’s name. You will need to modify this table to use the program for
mouse cursors other than the standard ones.

Before the .PCX images for custom mouse cursors can be integrated into
the game program, you must normalize their palettes with the other
graphical elements in the game. Furthermore, if you use the standard cursors
in a game with graphical elements that do not use the default palette, you
must rebuild the standard cursors, normalize those palettes, and treat them
just like custom cursors. That procedure is described in this chapter in the
section titled “Palette Correction.”

The Town game on the included CD-ROM uses the GMICE program to
build source code files from mouse cursor .PCX files that have been palette-
normalized.

Video Clips

Video clips are movie shorts. If you have a video capture board, such as the
Creative Labs Video Blaster, you can hook up to your computer a
CamCorder, a VCR, or any other standard video source to your computer and
generate a video file. You can also create one from graphical tools such as
NeoPaint; use the same animation techniques that you use to animate
sprites and process the resulting frames through one of your tools.

The difference between video and animation is that your game program
itself manages frame image and position during sprite animation, reacting to
the conditions of the game. The motion of a video clip, on the other hand is
predetermined; the clip plays in the background, and it plays an unchanging
sequence of frames.

CHAPTER 4: Game Building Strategies

Theatrix allows you to display a video file in the standard FLC format.
FLC is a format originally defined by Autodesk Animator Pro. An FLC file
consists of header information and frames. The frames are optimized so that
the pixels are compressed and each frame contains only the pixel information
that is different from the frame that precedes the current frame. This
approach allows the minimum storage for the animation sequence and the
minimum processing time to refresh the screen. Each frame has its own
palette information, too.

To add video to your game, you must first build or acquire an FLC file.
Now for the usual caveat. We're sure you're tired of hearing this, but, as with
everything else in a creative production, be reminded of your responsibility to
observe the rights of others and the consequences of ripping off someone
else’s intellectual property.

Building Video Clips with DTA

Among the Theatrix Tools is a shareware program called Dave’s . TGA
Animation Program (DTA). For complete documentation on DTA, the
Bibliography lists Morphing on Your PC, by the program’s author, David K.
Mason. The text file with the software on our CD-ROM should get you
going.

We used one video clip in an example game. The Town game on the CD-
ROM superimposes over a scene a video clip as seen through an open door.
The video clip shows a player piano playing and a cat wagging its tail. There
are 13 frames in the clip, and the program repeats the clip as long as you stay
on the scene. We built the frames for the clip with NeoPaint and built the
FLC file with DTA.

Building the frames for a video clip uses essentially the same procedures as
building animated sprites, and either approach would have worked except
that Town is a Myst-like game that moves from static scene to static scene.
Its scenes are not derived from the parts of Theatrix that support animation.

Before the .PCX images for video clips can be built into an FLC file, you
must normalize their palettes with the other graphical elements in the game
as described later in this chapter. This is true even if you are using an existing
FLC file. DTA has procedures for extracting and applying a common palette,
and you can use the extracted palette to normalize the rest of the game’s
graphics. As an alternative, you can use DTA to extract the individual frames

75

76 C++ Games Programming

to .PCX files, use these frames in the normalization procedure, and rebuild
the FLC file from the normalized .PCX frame files.

Playing Video Clips with Fastgraph

Theatrix encapsulates the operation of playing and stopping a video clip. The
game program tells Theatrix to begin displaying a particular video clip file,
provides the coordinates for the upper left corner of the clip, and specifies
whether the clip is to be played once only or repeated until the game tells
Theatrix to stop playing the clip. Theatrix plays the clip over the top of
whatever scene is currently being displayed.

Palette Correction

Before the .PCX files for a game’s scenery, background, sprites, video clips,
and cursors can be integrated into the game, you must normalize the palettes
for all the graphical elements.

We discussed the problem in Chapter 3. Every graphical element in a video
game can have a different palette. When you mix more than one element in
the same display and the elements use different palettes, only the ones that
are consistent with the active palette display properly. The others have
strange colors. In our games, the flesh tones are always green if we forget to
normalize the palettes.

Chapter 6 describes the Theatrix utility tools in detail. This discussion
explains the process of palette correction.

Given that you have some number of graphical entities with different
palettes, you first have to derive a common palette from all of them. That
procedure involves three steps.

First, extract palette files from all the graphical elements. Palette files
contain the palette information taken from a .PCX file.

Second, use all these extracted palette files to compute a common palette
file. This procedure finds all the colors in all the palettes and tries to squeeze
them into one. For example, if seven .PCX files have the color green in seven
different color slots in their respective palettes, the common palette chooses
one slot for green. The object is to get each of the colors in use in all the

CHAPTER 4: Game Building Strategies

palette files assigned to only one slot. The hope is that, altogether, the images
don’t use more than 256 different colors. When they do, the utility program
finds the closest possible match for the excess colors.

Finally, use the common palette file to modify all the original .PCX files so
that they use the common one in place of their originals. This modification
changes the palette offset value for each of the .PCX file’s pixels so that it
points to the correct color in the new palette.

When this procedure is complete, all the raw .PCX files in your game
operate with the same palette.

Sound Effects

Sound effects begin as .VOC files that you install into .SFX libraries. Chapter
6 explains the procedure for building the libraries.

Again, be careful about using someone’s copyrighted sound effect. You can
download many quotes from movies and TV shows, but don’t use them in
your games. Find someone who can imitate Bogie if you want his voice.

CD-ROM s are available with sound effects that you are permitted to use.
Most computer supply stores have a rack of CD-ROMs where you are likely
to find such material.

Recording Sound Effects

The best choice is to make your own noises and voices. You'll need a Sound
Blaster or another sound card that supports recording. For voices you need a
decent microphone. Radio Shack has several that work well.

You can also go out into the wilderness and record the birds and bees and
make .VOC files by patching your tape player into the line input jacks on the
Sound Blaster.

Beyond that, all you need is your imagination. The Myst guys tell about
how they made clock chimes by banging two wrenches together, adding echo
effects, and changing the playback rate of the sound. They got water gurgling
sound effects by flushing the company commode.

Your sound card comes with a recording utility program. As an alternative,
you can use the Blaster Master shareware program from the included CD-

77

78 C++ Games Programming

ROM. It is particularly convenient if you are going to convert from other
sound file formats or make special effects enhancements to your sounds.

Blaster Master supports a number of sound effects enhancements. You can
speed up or slow down the playback, add reverberation, and reverse the
playback, just for starters. There are many other things you can do with a
sound effects waveform.

Playback with CT-VOICE or DIGPAK

Theatrix uses one of two sound drivers to play back sound effects. Sound
Blasters comes with a driver named CT-VOICE.DRV. If the player of your
game has that configuration and has properly set the SOUND and BLASTER
environment variables, Theatrix plays the sounds back correctly.

Theatrix also uses DIGPAK, a commercial sound driver system that
supports many other sound cards. Chapter 11 describes DIGPAK in more
detail. You can use DIGPAK in your own games, and you can distribute the
driver with your games free without licensing concerns, but if you are going
to sell your games and distribute DIGPAK with them, you must pay a one-
time nominal license fee ($500) to the author.

DIGPAK comes with a setup program that the user runs to generate the
correct copy of the sound driver. The sound driver is named
SOUNDRV.COM, and Theatrix loads and uses it if it is there.

Music

Theatrix plays MIDI music files only if the player has the commercial
MIDPAK music driver. Chapter 11 describes MIDPAK in more detail. You
can use MIDPAK in your own games, and you can distribute the driver with
your games free without licensing concerns, but if you are going to sell your
games and distribute MIDPAK with them, you must pay a one-time nominal
license fee ($500) to the author.

The same setup program that builds the DIGPAK driver also builds the
MIDPAK drivers. There are three files, and all of them must be available to
the Theatrix game program at startup time. The files are named
MIDPAK.AD, MIDPAK.ADV, and MIDPAK.COM.

CHAPTER 4: Game Building Strategies

Recording Music with MT

Chapter 3 discussed the creative side of making MIDI files. The included CD-
ROM contains a shareware sequencer program, named MT, that runs on a PC
with a music card that implements the Roland MPU-401 protocols. The
Sound Blaster 16 is one such card.

You can use the MT sequencer to lay down as many as 16 tracks and
produce multichannel MIDI songs, selecting from all 128 instruments in the
standard MIDI instrument list.

Playing Back Music with MIDPAK

Theatrix does not have its own MIDI library format for songs. MIDPAK uses
a format with the .XMI extension. MIDPAK comes with a utility, named
MIDIFORM, that you use to build an .XMI file from a set of MIDI files.

The game program instantiates an object of the MusicHand class. A game
typically has only one .XMI file, which is treated as the musical score for the
whole game. The score contains individual songs that can be played
whenever the game needs music. A game can start a song, stop a song, and
test to see whether a song is still playing. The music plays in the background
asynchronously and does not affect the rest of the program.

79

Theatrix, A C++
Class Library

“Generally speaking, the American theater is the aspirin of the middle classes.”
Wolcott Gibbs

This chapter describes Theatrix, a C++ class library from which you build PC
game applications. You will learn about:

& The Theatrix metaphor
& Class hierarchies

© Hands

o Cues

© Directors

81

82 C++ Games Programming

The Theatrix Metaphor

Theatrix uses a theatrical production metaphor to provide an easy and
intuitive way for us to think about our task of building games. The paradigm
also provides terminology that we can use to communicate.

Games written with Theatrix use a theatrical production as a model. In a
play, the director coordinates a cast of actors, stagehands, and technicians to
present a performance. Each member of the crew has specific tasks to
perform for the play to be a success. Some members, such as actors, are
visible to the audience, whereas others, such as stagehands, are not.

Timing is important in a play. The director cues members of the crew
when it is time for a member to perform a task. Sometimes, a cast or crew
member takes cues from the actions of others instead of directly from the
director.

This concept has stood the test of centuries and works well for plays. What
about games though? Is it possible to describe a game using these ideas? Sure
it is. All the games and demos in this book are written using the theater
model. Remember, however, that the metaphor is only a model and not a
strict set of rules. The metaphor makes it easier to think about a game; use it
to an extent that you find comfortable.

Theatrix Class Hierarchies

Theatrix consists of two class hierarchies: one that encapsulates your game
and another that encapsulates all the graphical, musical, and vocal
components of your game.

The Theatrix Class

Figure 5.1 shows the class hierarchy within which you encapsulate the
components of a game.

CHAPTER 5: Theatrix, A C++ Class Library

G
Game Applic@

Figure 5.1 Encapsulating the game

The Theatrix class in Figure 5.1 encapsulates the controls needed to run a
game. The class manages events and message queues, and it initializes and
shuts down system components such as timers, sound and music generators,
the joystick, the mouse, and so on.

The Game Application bubble in Figure 5.1 represents your game program.
It is a class named by you and derived from the Theatrix class. It contains
data members that are objects and references to objects of classes derived
from the Theatrix class library (discussed next) that you need to run your
game. It can also contain anything else specific to the game itself. We will
show you soon what this class looks like in a real program.

The Theatrix Class Library

Figure 5.2 is the Theatrix class library. To build a game, you derive
specialized classes from these classes, and, in some cases, you instantiate
objects of these classes. These classes implement the Theatrix metaphor.

83

C++ Games Programming

Director

VocalHand

MusicHand
VideoDirector @rmer

SceneryDirector

SceneDirector @

Figure 5.2 The Theatrix class hierarchy

The five levels in Figure 5.2 represent the five levels of abstraction at which
you can design your game. The highest level of abstraction is shown at the
bottom of the hierarchy, and the lowest is shown at the top.

Most of the classes in Figure 5.2 are designed to be base classes. You build
your games by deriving from them. The MusicHand class, however, is
designed to have an object of the class instantiated. Any game that plays
music does so through one instance of the MusicHand class.

As you work at lower levels of abstraction, you must understand and use—
and in some cases, provide—more of the details of implementation. The
higher levels of abstraction encapsulate those details. When you work at
higher levels you can ignore the details of the lower levels.

The example games on the included CD-ROM work at different levels of
abstraction. Table 5.1 lists the games and shows where they fit on the
chart.

CHAPTER 5: Theatrix, A C++ Class Library 85

Table 5.1 Levels of abstraction of example games

Level of
Example Game Abstraction

—

Textmode
Planet

Theatris
Marble Fighter
SkyScrap
TicTacToe
Mouse

Town

Skater

[e T "~~~ B © R R

Shootout

A game can use the details from several levels of abstraction. For example,
the Shootout game, implemented at level 5, uses level 4’s SceneryDirector to
implement introductory screens and level 2’s MusicHand class to play music
selections from a musical score.

The Hand Class

You do not usually directly derive anything from the Hand class, although it
is possible. This class hosts and manages the events and messages that game
program components use to communicate between themselves and the
system. Usually your program derives classes from the classes that derive
from Hand.

The Hand class allows its derived objects to request cues, which are
messages that the system sends to Hand objects. Messages are usually
associated with system events such as keystrokes, but they may also be
messages posted by game components to be received by Hand objects that
register for the messages.

86 C++ Games Programming

The CUELIST Table

A derived Hand class requests cues for its objects by defining a CUELIST
table, which specifies the cues to be received and the class’s member
functions to receive them.

The class declaration includes a DECLARE_CUELIST statement that
declares the existence of a CUELIST table for the class: .

class MyHand : public Hand {
[y,
DECLARE_CUELIST

i

Then the class definition includes the CUELIST table:

CUELIST(MyHand)
KEYSTROKE('a',on_key_a)
TIMER(1,on_timer)

ENDLIST

The CUELIST statement specifies that a table of cues follows. The ENDLIST
statement terminates the table. The CUELIST statement’s parameter
identifies the class for which the cues in the list are being registered, which
means that the CUELIST statement must be within the scope of the class
declaration. A CUELIST declaration generates a memory-resident table, so
you should put it in the .CPP source code file of your program rather than in
the header file that declares the class.

The CUELIST table just shown includes a KEYSTROKE entry that
registers objects of the class to receive a keystroke cue. It also includes a
TIMER entry that registers for a cue based on the system clock.

The on_key_a and on_timer parameters to the KEYSTROKE and TIMER
statements are member functions that are called callback functions because
the table entries pass to the system the addresses of functions to be called.
Whenever the user presses the a key, for example, the system calls the
registered class’s on_key_a member function, once for each instantiated
object of the class. The on_key_a function defines the object’s behavior when
the a key is pressed. The callback function might be defined like this:

CHAPTER 5: Theatrix, A C++ Class Library

void MyHand::on_key_a()

{
print_string("the 'a' key has been pressed!");
}

There are nine types of cues. Table 5.2 lists the cues and gives examples of
their entries in the CUELIST table.

Table 5.2 CUELIST events

Event CUELIST Entry

Keystroke KEYSTROKE('',on_key_a)

Hotkey pressed HOTKEY(SCAN_CTRL, on_ctrlkey)

Clock tick TIMER(1, on_timer)

Message posted MESSAGE(on_message)

Mouse click MOUSECLICK(LEFTMOUSEBUTTON, on_mousebutton)
Mouse movement MOUSEMOVE(on_mousemove)

Joystick moved JOYSTICKMOVE(on_joystickmove)

Joystick button JOYSTICKBUTTON(on_joystickbutton)

Network packet NETPACK('X', on_netpack)

Callback Function Signatures

The callback function for each cue type has its own function signature
depending on what the system passes as arguments. The class and callback
identifiers are up to you, but callbacks should have return types of void and,
if you are expecting to use the arguments, parameter lists that match the
signatures. The discussions that follow identify the signatures for the
callback functions.

Callback Functions

A callback function must be a member function of a Hand class or of a class
derived from Hand. When the system calls a Hand callback function, it

87

88 C++ Games Programming

passes data arguments depending on which cue is being sent. Table 5.3 lists
the cues and the prototypes for their associated callback functions.

Table 5.3 Callback function prototypes

Event Callback Prototype Arguments

Keystroke void cb(int key) ASCIl keystroke

Hotkey pressed void cb(int scancode) Keyboard scan code
Clock tick void cb()

Message posted void cb(int p1, long p2) App-dependent values
Mouse click void cb(int x.int y,int b) Coordinates, Button
Mouse movement void cb(int x,int y,int b) Coordinates, Button
Joystick moved void cb(int x, int y) Coordinates off center
Joystick button void cb(int x, int y) Coordinates off center
Network packet void cb(int pkt) Packet byte value

These prototypes indicate what the system passes when it calls the callback
functions. You can use a callback function without the parameters if the
function does not need them. The CUELIST table uses C++ casts to build its
table, so there are no compile-time checks for parameter numbers and types.
For example, a keystroke callback function does not need the keystroke value
if it is registered for only one cue, so it can be declared without any
parameters. Be careful to specify only those parameters that the system
actually sends. The casting mechanism effectively bypasses C++’s static type-
checking mechanism for function parameters, and you could get into trouble
by expecting something quite different than what the caller passes.!

KEYSTROKE

A keystroke cue is sent whenever the key associated with the cue is pressed.
Keystrokes are useful, but they have a limitation. Keystrokes use the BIOS
keyboard mechanism, which means that only one keystroke can be detected
at a time, even if the user is pressing two keys.

Ipurists might be offended by this apparent override of the type-safety built into the C++
language. Perhaps they are right, but this mechanism has been used in such class libraries as the
Microsoft Foundation Classes for years.

CHAPTER 5: Theatrix, A C++ Class Library

The keystroke cue callback function has this signature:
void ClassName::callbackname(int k);

The parameter’s argument is the key that was pressed. If this callback is
registerd to be cued for only one key, then the parameter’s argument will
always have that one value. If, however, you use one callback to handle
multiple keys, you will have to test the value of 'k’.

HOTKEY

Hotkey cues bypass BIOS and read the keyboard directly, so multiple keys
can be detected at the same time. Hotkeys are great for intense arcade action,
but it is difficult to write a menu using hotkeys because they often report
multiple cues even if the user pressed the key once. Hotkey cues specify
keyboard scan codes rather than ASCII key values. The header file named
scancode.h provides global symbols for keyboard scan codes and for ASCII
key values for keys such as the Esc key that do not have character constant
literal expressions in C++.

The hotkey cue callback function has this signature:
void ClassName::callbackname(int k);

Like keystrokes, hotkey callbacks take a single, integer parameter, which is
the keyboard scan code currently detected as being pressed.

TIMER

Timer cues are a vital part of any arcade game. The first argument in the
TIMER entry specifies the number of cues sent each second. Because the
system’s hardware timer runs at 18.2 ticks per second, the argument’s value
is approximate.

The system sends timer cues at a regular rate, regardless of the processor’s
speed. Games use timer cues to float objects across the screen or to maintain
a constant speed for bullets, rockets, and so on. The timer cue also paces the
frame refresh rate of animated sequences.

The timer cue callback function has this signature:
void ClassName::callbackname();

Timer callbacks take no parameters.

89

90 C++ Games Programming

MESSAGE

Message cues are different from the other types of cues. They are sent by a
component of the game rather than in response to an event. Messages allow
the Hand objects in your game to communicate. When a Hand object posts a
message, other Hand objects that have registered for the message are cued.
Messages may have data values associated with them.

The message cue callback function has this signature:
void ClassName::callbackname(int msg,long data):

Message callbacks have two parameters. The first is the message that was
posted. The second parameter is the optional data value that can be sent
along with the message.

MOUSECLICK

Mouse click cues are sent whenever either button on the mouse is pressed.
The mouse click cue callback function has this signature:

void ClassName::callbackname(int x,int y,int b);

Mouse click callbacks are sent three integer parameters. The first two
parameters are the X/Y location of the mouse on the screen at the time of the
click. The third parameter is set to either LEFTMOUSEBUTTON or
RIGHTMOUSEBUTTON, depending on which button was pressed.

MOUSEMOVE

Mouse movement cues are sent whenever the player moves the mouse. The
mouse movement cue callback function has this signature:

void ClassName::callbackname(int x,int y,int b);

Mouse movement callbacks are sent three integer parameters. The first two
parameters are the X/Y location of the mouse on the screen at the time of the
click. The third parameter is set to zero if no button is being held down or is
set to LEFTMOUSEBUTTON or RIGHTMOUSEBUTTON if a button is
being held down. Programs can use the button parameter to implement
mouse drag operations.

CHAPTER 5: Theatrix, A C++ Class Library 91

JOYSTICKMOVE

Joystick movement cues are sent whenever the joystick is positioned away
from the center position. The joystick movement cue callback function has
this signature:

void ClassName::callbackname(int x,int y);

Joystick movement callbacks are sent two integer parameters indicating the
distance from the center position. A negative x value indicates left of center;
positive x indicates right of center; negative y indicates below center, and
positive y indicates above center.

JOYSTICKBUTTON

Joystick button cues are sent when a joystick button is pressed. The joystick
button cue callback function has this signature:

void ClassName::callbackname(int x,int y);

Joystick button callbacks are sent the same two integer parameters that
joystick movement callbacks receive.

NETPACK

Network packet cues are sent when Theatrix reads a packet from the serial
port. Network packets are present only in games that use serial port
communications. The network packet cue callback function has this
signature:

void ClassName::callbackname(int p);

The single parameter is simply the value that was sent across the serial cable.

Requesting and Stopping Cues During the Game

A Hand requests cues either with the CUELIST table or by calling member
functions that make the requests at runtime during the course of the game.
The CUELIST table establishes an initial list of registered cues when the
game begins.

92

C++ Games Programming

If your game has a Hand that requests and stops cues during the course of
the game, you can use Hand member functions that perform those
operations. Table 5.4 lists the Hand member functions that request and stop
cue callbacks during the game’s execution.

Table 5.4 Cue request and stop functions

void request_keystroke_cue(int key,callback);
void stop_keystroke_cue(int key,callback);

void request_hotkey_cue(int scancode,callback);
void stop_hotkey_cue(int scancode, callback);
void request_tfimer_cue(int rate,callback);

void stop_timer_cue(int rate, callback);

void request_message_cue(int msg,callback);
void stop_message_cue(int msg,callback);

void post_message(int msg,long data);

void request_mouseclick_cue(int b,callback);
vold stop_mouseclick_cue(int b,callback);

void request_mousemove_cue(callback);

void stop_mousemove_cue(callback);

void request_joystickbutton_cue(int b,callback);
void stop_joystickbutton_cue(int b,callback);
void request_joystickmove_cue(callback);

void stop_joystickmove_cue(callback);

vold request_netpack_cue(int,callback);

void stop_netpack_cue(int,callback);

Level 1: Directors and Hands

Level 1 in Figure 5.2 is the lowest level of abstraction for a Theatrix game
program. Game-dependent classes at this level derive from the Director and
Hand classes. Nothing at this level supports graphics, sound effects, or
music. Level 1 will launch a game program and manage events and cues.

CHAPTER 5: Theatrix, A C++ Class Library

The Director Class

The Director class implements objects that control the running of the game.
A game may declare many Director objects, usually of classes derived from
Director, but only one Director object is in control of the game at any given
time.

Stopping the Director

A game cannot go on forever, so there must be a way to stop it. A Hand
object calls stop_director to terminate the Director object that directs its
activities. If the Hand is itself a Director, it terminates itself by calling the
stop_director function.

When the terminated Director object is the only Director in a game,
stop_director terminates the game. You learn later how games with multiple
directors pass control among one another.

Level 2: MusicHand and VocalHand

Abstraction level 2 derives classes from Hand. VocalHand provides sound
support, and MusicHand supports playing selections from a musical score.
Contemporary games do not often use text mode displays with music sound
effects, so we do not include demo games at this level. If you have such
requirements, then, by all means, derive from VocalHand and work at the
second level of abstraction. We have chosen not to do that. Two demos—
Town and TicTacToe—derive classes from VocalHand and use objects of
those classes to play sound clips.

The MusicHand Class

Theatrix provides support for music in games with the MusicHand class.
MusicHand reads .XMI files, which are files that can store multiple MIDI
files. The interface is simple. MusicHand takes the name of an .XMI file as a
parameter to the constructor:

musichandptr=new MusicHand("tunes.xmi");

93

94 C++ Games Programming

The file represents the game’s musical score. When the time comes to play a
selection from the score, a call to the MusicHand object can be made:

musichandptr->play_music_clip(clip);

The clip argument in the play_music_clip function call is an integer that is
relative to one. It must be greater than zero and less than or equal to the
number of clips in the XMI library that was specified as an argument to the
MusicHand constructor. If a previous selection is playing, this function stops
that one and starts the new one.

To ask the MusicHand object whether it is still playing a selection from
the score, call the music_clip_is_playing member function:

while (musichandptr->music_clip_is_playing()) {
// do something while music is playing
}

To tell the MusicHand object to stop playing a selection, call
stop_music_clip:

musichandptr->stop_music_clip(); // current selection stops

The is_conducting member reports whether MusicHand detected a sound
card driver when the program started.

if (musichandptr->is_conducting()) {
// music is supported by this game environment

The VocalHand Class

VocalHand loads .SFX libraries, which are files of sound effects. .SFX libraries
contain multiple sound clips, provided in the .VOC format. A game program
can derive from VocalHand or instantiate a VocalHand object, although
many games will use the Performer class, which is derived from VocalHand.

The VocalHand constructor accepts a pointer to the director for which the
object is running. If you omit that argument, the constructor builds the

CHAPTER 5: Theatrix, A C++ Class Library

object with no associated director, and the class may not have a CUELIST
entry or request and stop cues with function calls.

Following is a small class that derives from VocalHand to implement
sound effects for a game.

class SoundTech : public VocalHand {
char *sfxfile;
void initialize()
{ load_sfx1ib(sfxfile); }
public:
SoundTech(char *sfx)
{ sfxfile = sfx; }
}s

The call to VocalHand::load_sfxlib tells the object the name of the .SFX
library to load. All the sound clips that can be played by the VocalHand
object are in that library. A game can instantiate an object of such a class, as
the following example shows:

static SoundTech *soundtech;

soundtech = new SoundTech("town.sfx");

The game that uses such a class can then call VocalHand member functions
through objects of the derived class, as shown here:

soundtech->play_sound_clip(clip); // play a sound clip
/...

soundtech->stop_sound_clip(); // stop the sound clip
[l s

if (soundtech->sound_clip_is_playing()) // test if clip is playing
// sound clip is playing

The clip number argument in the play_sound_clip function call is an
integer that is relative to one. It must be greater than zero and less than or
equal to the number of clips in the .SFX library that was loaded for the
VocalHand object.

95

96 C++ Games Programming

Level 3: Performers and VideoDirectors

Abstraction level 3 derives classes from VocalHand and Director. Performer
provides basic graphics support, and VideoDirector provides video page-
flipping support.

The Performer Class

Performer, which supports graphics, is derived from VocalHand, which is
derived from Hand. In addition to being able to request cues, Performer loads
.GFX libraries, which are files that contain images that you provide in the
form of .PCX files. Once Performer loads a .GFX library, it can display the
images inside the library at any time.

.GFX and .SFX libraries are created using utility programs from the
Theatrix toolkit. Chapter 6 explains how these tools work.

The VideoDirector Class

VideoDirector is derived from Director. VideoDirector supports page-flipping
animation, which uses a hidden video page to assemble a scene and then
displays it instantly so that the user sees only the finished page.

Level 4: SceneryDirectors

Until now, our discussion has related mostly to the action part of the game.
Few games, however, jump immediatly into the action. Most of them have
an introductory screen, and many have a trailer screen that comes up after
the game is over. Most games have a menu display, too, which allows you to
choose from selections such as whether to play another session, get help,
change options, exit the game, and so on.

At its fourth level of abstraction, Theatrix implements the
SceneryDirector class, which implements scenery without animation.

The SceneryDirector Class

Dislaying an information screen seems simple enough. Display a .PCX file
and wait for a key. That’s about all there is to it, but a few subtleties should

CHAPTER 5: Theatrix, A C++ Class Library 97

be considered. For instance, how should the image be displayed? If
displayed on the visual page, the image appears on the screen a line at a
time. (It appears quickly, but a line at a time nonetheless. On a slow
machine, the user will see this effect.) This might be a desired effect, but it
usually makes the game appear to run slowly. An alternative is to load the
image into the hidden page and do a page swap so that the image appears all
at once. Also, which keys should be used as an acknowledgment? Any key
or only certain ones?

The SceneryDirector class offers one solution. SceneryDirector is designed
to be used as a base class:

class MyIntroPage : public SceneryDirector
{
public:
MyIntroPage() : SceneryDirector("myintro.pcx") { }
}

By creating an instance of MyIntroPage before any other Director objects,
you’ve added an intro page. SceneryDirector can be used to display intro
screens, help screens, and trailer screens. The demos on the CD-ROM—such
as Marble Fighter, Theatris, and Shootout—all use SceneryDirector, which
displays the image by using a page-swap and then waits for the Enter, space
bar, or Esc key to be pressed before it continues.

Level 5: Players and SceneDirectors

Theatrix provides two classes at level 5 that encapsulate the operations of
video pages and bitmaps. These classes are Player and SceneDirector. Player
is derived from Performer, and SceneDirector is derived from
SceneryDirector.

These two classes make it easy to animate multiple sprites
simultaneously. At first glance, animating two sprites doesn’t seen any more
complicated than animating one sprite as in the Planet demo—but it is. With
single sprite animation, a scene can be updated simply by erasing the old
image (with a portion of the background image) and drawing the new one.
This technique doesn’t work with two sprites because the sprite that is

98

C++ Games Programming

moving might overlap the sprite that is not moving, so it would erase part or
all of the second sprite. In short, to animate two or more sprites, the updating
must be coordinated.

Another facet of multiple sprite animation involves Z-order, or the ability
of one sprite to consistently appear above or in front of another sprite. This
requires the sprites to be updated in a specific order. Both of these issues are
addressed and taken care of by the SceneDirector and Player combination.

Theatrix
User’s Guide

“Science is the guide of action.”
William Kingdom Clifford

This chapter describes the utility programs that accompany and support the
Theatrix C++ class library. You will learn about these subjects:

@ Graphics file libraries

@ Sound effects libraries

& Palette management utilities
© Mouse cursors

© Miscellaneous utilities

99

100

C++ Games Programming

Managing Graphics File Libraries

GFX libraries are files that contain sprites and other bitmaps. Usually each
sprite has its own GFX library, which contains the bitmaps that define all the
poses that a sprite can assume. Other bitmaps are props, such as doors that
open, numeric displays for showing the game’s score, and any other bitmap
that the game needs to display over the scenery.

GFXMAKE

Graphics bitmaps are supplied to GFXMAKE in the form of .PCX files. There
are two ways to use GFXMAKE: The file names can be included on the
command line, or a “list file” can be supplied that contains a list of the .PCX
files to be included.

Let’s pretend that we are going to write a game in which a character moves
around the screen in four directions. We’ll need four bitmaps of our character:
one with the character moving up, one moving down, one moving left, and
one moving right. The construction of the images is up to you. You might
want to draw them in a paint program, render them with a 3-D package, or
capture them from a picture. Whatever your source is, you need to produce
each image in the .PCX format. Almost any format can be converted to the
.PCX format using Image Alchemy, which is included on the CD-ROM.!

Once you have the four .PCX files of the character moving in four
directions, producing a .GFX file is simple. Place the four images in the same
directory, and then, in that same directory, execute this command:

GFXMAKE test.gfx up.pcx down.pcx left.pcx right.pcx

Make sure that GFXMAKE is in the command path. If all goes well (and
you’ve named your .PCX files up.pcx, down.pcx, and so on), the GFXMAKE
will create a .GFX file called TEST.GFX, which contains four images. Then,
in your game, in a Performer-derived initialize member, include this line:

I The version of Image Alchemy included on the CD-ROM is a demo version, which can convert
images of 640 x 480 and smaller resolution. Refer to the Image Alchemy documentation for
ordering information.

CHAPTER 6: Theatrix User’'s Guide

MyPerformer::initialize()

{
v
load_gfx1ib(”test.gfx”);
VY R

}

Now your Performer will be able to use the show_image member:

show_image(x,y,1);

This line would display the first image (up.pcx) of the TEST.GFX file with its
upper left corner located at x/y. Likewise, using 2 as the last parameter would
display the second image (down.pcx).

GFXSHOW

GFXSHOW reads .GFX files and displays the images. When you’re creating
the .GFX file, this utility can be helpful. Had we actually created our
TEST.GFX file, we could then type:

GFXSHOW test.gfx

The contents of our new .GFX library would be displayed. If the images in
test.gfx use a palette other than the standard VGA palette, you can supply
another parameter after the .GFX libarary:

GFXSHOW test.gfx test.pal

SHOWPCX

SHOWPCX displays the .PCX file you supply on the command line. Unlike
most viewers, SHOWPCX displays images in Mode X.

Managing Sound Effects Libraries

Sound effects libraries contain sound clips built from .VOC files. Usually,
each sprite has a library of its own voices and sound effects. A base class
often manages the sound effects for its derived sprites.

101

102 C++ Games Programmming

SFXMAKE

SFXMAKE works like GFXMAKE except that SFXMAKE takes .VOC files as
input and creates .SFX files. The .VOC files can be supplied on the command
line or in a list file. Let’s say that we have a game with two sounds: a gun
firing and an explosion. Although the list file syntax is usually used if you
have more than two entries, let’s use it so that you can see how it works.

First, we prepare the list file:

shot.voc
explode.voc

Let’s call the file sounds.txt. In the directory that contains this file and the
two .VOC files, type:

SFXMAKE sounds.sfx @sounds.txt

Now you can load the file in your game in much the same way you loaded
the .GFX library in the preceding example. In a VocalHand-derived class,
place this code:

void MyVocalHand::initialize()

{
Lol
load_sfx1ib(”sounds.sfx");
filziies

}

In a callback in that same class, you can play the gunfire sound with this
command:

play_sound_clip(1);

Specifying 2 as the parameter would play the explosion.

SFXPLAY

Like GFXMAKE, SFXMAKE has a companion utility that you can use to
make sure that your library has been assembled properly.

CHAPTER 6: Theatrix User's Guide

The command
SFXPLAY sounds.sfx

allows you to play each sound by entering the number of the sound clip.

Palatte Management Utilities

It’s important to understand palettes, because you must deal with them in
order to display images that use colors other than the standard VGA colors,
We will discuss palettes and everything that you need to know to get around
them, but we will not worry about every detail of the VGA hardware.

We have been using 256-color modes. This means that 256 colors can be
displayed together at the same time on one screen. The modes in question
are capable of displaying virtually any color but can deal with only 256 at a
time. When you first put the VGA adapter into Mode X, 256 colors are
available. Although these default VGA colors can be used to accomplish
quite a bit, they are limited, especially when it comes to displaying rendered
pictures or scanned photographs.

You can tell the VGA card to use other colors instead, but managing 256
colors is more than most people want to do. The alternative is to use the
palette tools documented here to do the management for you. This
technique, if used properly, frees you from having to worry about each color
entry but allows you to make full use of the 256 color modes. Follow these
steps:

1. Produce a background image .PCX file. This image should fill the
whole screen (320 x 240 for Mode X).

2. Produce the individual characters for the scene (also in .PCX format).

3. Extract a palette from the background image using GETPAL (discussed
next).

4. Choose one or two sample shots of each character from the game and
extract their palettes using GETPAL.

5. Create a master palette with GENPAL (discussed in this chapter),
using as input the palettes you extracted from your background and
characters.

103

104 C++ Games Programming

6. Force all the .PCX files (the background and all images for the
character) to use the master palette. This is accomplished with
CVTPAL, which will be discussed later in this chapter.

7. Create the desired GFX library using the converted .PCX files. This is
done with GFXMAKE.

8. Use the converted background in the game with the show_pcx
member. The palette in the background .PCX image will be installed
into the VGA memory automatically.

Now you can display the background image with the show_pcx member of
VideoDirector and then display the .GFX images at will.

GETPAL

GETPAL extracts the palette from a .PCX file. Each .PCX file contains its
own palette. Utilites such as CVTPAL and GENPAL (which we will discuss
next) take palettes as input, so it is necessary to extract the palettes from
PCX files. This is the job of GETPAL. GETPAL is used this way:

GETPAL picturel.pcx

; This command would cause GETPAL to create a palette file called
. picturel.pal, which would contain an ASCII list of the palette entries. If you
don’t want the palette output to have the same name as the input .PCX, then
include the desired name after the PCX:

é GETPAL picturel.pcx pall.pal

The resulting palette files can be used as input for CVTPAL, GENPAL or
NeoPaint.2

CVTPAL

CVTPAL installs a new palette in a .PCX file. Using GENPAL, a palette is
generated that contains the colors you want to use. The problem is that now
you have a number of .PCX files with random palettes but only a single

2Use care if you decide to manipulate the palette with NeoPaint. NeoPaint forces color 0 to
black and color 255 to white.

CHAPTER 6: Theatrix User’'s Guide

palette file. CVTPAL can be used to convert the palette of each .PCX file to
the new palette. For example:

CVTPAL picturel.pcx pall.pal

This command causes CVTPAL to replace each pixel of picturel.pcx with the
closest match it can find based on the new palette found in pall.pal. In order
words, CVTPAL normalizes the image found in picturel.pcx to the palette
found in pall.pal. You should use the palette you create with GENPAL to
normalize all the .PCX files in your game. Once these .PCX files have been
packaged into .GFX libraries, all the images can be displayed on the same
screen at the same time without any palette problems.

GENPAL

GENPAL merges several palettes into one palette, eliminating duplications.
The command looks like this:

GENPAL 0 first.pal second.pal third.pal

This command produces a master palette called new.pal, which is the result
of merging the three palettes listed. The zero (the first parameter) is the
tolerance level. Zero means that GENPAL will omit only exact color
matches. Sending 1 means that GENPAL will omit exact matches and
matches that are off by only 1. The higher this number, the more matches
GENPAL will find. This lets you tune GENPAL to produce a palette as close
to 256 as possible (larger palettes render better graphics). GENPAL reports
how many colors are present in the master palette. You can include as many
palettes as you like on the command line (until you excede DOS’s 128-
character limit).

Making Mouse Cursors

Theatrix comes with some mouse cursors already defined. These are fine for
general use, but you can define your own mouse cursors with the utility
discussed in this section.

105

106 C++ Games Programming

GMICE

The GMICE utility program allows you to generate the C++ arrays that
define custom mouse cursor shapes from .PCX files. You begin by defining
your mouse cursors as 16 x 16 bit .PCX files with 256 colors.

Next, you determine the cursor’s hot spot, which is the point of focus of
the cursor. The hot spot is the pixel coordinate within the cursor image that
is at the screen coordinate that gets reported to the program for the mouse
coordinates when the cursor is moved or clicked.

GMICE has a table of hot spots already defined:

Ll e hotspot table
static struct hs {
char *fn;

TRt Xy

} HotSpots[] = {
LR o 0,2 1.)
{-BRTL 08 -1]
{-CONY,. 14,15}
{=RUpr.- 14 }
U 0, }

A %URS: <15, 00135

{"LR"; 155,159

{05150

{="CNY,. =7 }

{“2DEY; 10, }

{ 0,. 0 }

o o o

¥

GMICE relates the two-letter tokens in the table to the first two characters of
the .PCX file’s name and uses that vector to select the X and Y values for the
hot spot. To use other file name conventions or different hot spot values, you
must modify this table in GMICE.CPP and recompile the utility program.

To run GMICE, name the output file followed by the .PCX files on the
command line. You can use actual file names or names with wildcards, or
you can specify a list file by using the @ prefix. Here is an example:

GMICE mice.cpp *.pcx

CHAPTER 6: Theatrix User's Guide

GMICE produces a file of source code that you compile along with your game
program. Here is an example of part of the table that GMICE produces in the

source code file:

char UPCURSORL] = { 14, 0, // hotspot x/y

255,255,255,255,255,255, 255,255, 255,255, 255, 255, 255,
255.255,255.255,255.255.255.255.255.255,255.255.255.
255.255,255.255.255.255.255.255.255.255,255.255,255.
255,255,255,255,255, 255,255, 255,255, 255, 255,
255,255,255,255,255, 255,255, 255, 255,
255,255,255,255, 255,255,255,
255,255,255,255, 255,255,255,
255,255,255,2565, 255,255,255,
255,255,255,255, 255,255,255,
255,255,255,255,255,255, 255,
255,255,255,255, 255,255,255,
255,255,255,255, 255,255,255,
255,255,255,255, 255,255,255,
265,255,255,255,255,255, 255,
255,255,255,255,255,255,255, 255,
255,255,255,255, 255,255,255, 255,

OI

o o o
.- . -

- - - - -

O O o ocoocoocooo oo o

0'

o O o o

.

O 0O oo ocooocooo o o o

-

ov
Or
0.

0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0

0'

o o ©

- - - -

O O oo ocooococoooc oo o

0'

o o o

- - - - -

OO ococoooocooo o o o

0;

o O o o

O O o ocoooocoo o o o

0,

o o o o

- - - -

O 0O oo oocoooooo o o o

-

0'

0,
0,
0,
0,
0,
0,
0,
0

(== I = W <> B = P -}

63,
63,
63,
63,
63,
63,
63,
63,
63,

0,

0,

O O O o o

- - - -

O O o oo ooco o o o

S OO OO O O ©® M W & ™ &
W W w PP NN NP WRN W

0-

o O o o
. e e .

O 0O ococoocoocoooc oo
-

) 0O O X O ™ O O o & O &
W N NP NN WWWW

0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
63,
82,
82,
63,
82,
82,
82,
82,
82,
82,
82,
63,

0:

o o o

- - - - -

O OO oo oocoocoooc o o

63,
63,
63,
63,
63,

0,
0:
0-

0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0

63,
82,
82,

O O o o o
* e e e =

- - - -

O O o oococoooco oo

S el e S T o < T« - B« - B~ N~ '~ N~ NI NS NI NP
W R NP RPN WL WWwWwWw w

82,

= 0 = B =

107

108 C++ Games Programming

Use the name of the array in the CURSORLIST declaration when you declare
the cursor shape for regions of the screen:

CURSORLIST(Town)
MOUSE_CURSOR(0, 0, 105, 239, LFCURSOR, Took_left)
MOUSE_CURSOR(106, 0, 211, 199, UPCURSOR, Took_forward)
MOUSE_CURSOR(106, 200, 211, 239, DNCURSOR, Took_back)
MOUSE_CURSOR(212, 0, 319, 239, RTCURSOR, look_right)
ENDCURSORLIST

Miscellaneous Utilities

The utilities we have discussed so far have been designed specifically for use
with Theatrix. The ywo utilities in this section are general .PCX
manipulation tools.

PASTE

PASTE is useful for “pasting” text (or another portion of an image) onto a
snapshot, or rendered background. Let’s say that you are preparing a help
screen. You want a fancy background with text over it (like the help screens
in Marble Fighter and Theatris). You could bring the image into a paint
program and type text over it, but what if you mess up or decide later that
you want to move the text to the left a bit?

PASTE allows you to prepare a separate image, containing only the text,
and then paste the text over the original image. If you decide to change the
text color or move the text, you make the change in the text image and rerun
PASTE. PASTE copies anything that is not color 0 (usually black).

Note that the image to be pasted does not have to contain text at all—you
can paste any two images together. They should both be the same size.

CHAPTER 6: Theatrix User's Guide

REGION

REGION “cuts” a region out of one .PCX file and saves it in another. For
example:

REGION big.pcx small.pcx 100 100 200 200

This command displays big.pcx and then saves the region defined by 100,100
at the upper left corner and 200,200 at the lower right corner. This utility is
useful when you want to animate a portion of a background and don’t want
to save the entire picture.

109

Theatrix
Reference Manual

"Libraries are not made; they grow."
Augustine Birrell

This chapter is the reference manual to the Theatrix C++ class library that is
a part of the included CD-ROM. You use it to look up details about the
various components of the library. The chapter includes descriptions of:

O The Theatrix class library
@ Theatrix macros

@ Global values

@ Global constants

111

112 C++ Games Programming

Class Library Reference

This manual documents those parts of the Theatrix class library that
represent its public interface. There are many other classes in the library that
this chapter does not discuss because the programmer does not need to access
their operations directly. We decided not to address them because you might
decide that you need to use them, and that would be a mistake. Later
versions of this library could significantly change how certain classes work.
For example, the library uses its own linked list and other container classes.
Eventually these will be replaced by container classes in the C++ Standard
Template Library when that library is formally defined and universally
understood.

Director (director.h)

There is usually one Director object per screen in a game. The game play is
one or more Director objects, the menu is another Director object, and so on.
Any game created with Theatrix must have at least one Director.

Constructor

Director() // protected

Creates a new Director object. Because this constructor is protected, you can
create a Director only by using derivation. Director is a relatively large object,
about 3KB, so it should be created with care. Typically, a Director-derived
class should be created dynamically using the new operator.

take_over
virtual void take_over() // protected

Runs the Director’s cue-dispatching loop. This member function is called
automatically by Theatrix. The take_over function causes the Director to
take control of the application. During the execution of take_over, all other
Director objects in the game are idle.

Because take_over is called automatically by Theatrix, it is not necessary
to call it. It is, however, often useful to override it. For example, overriding
take_over is a way to ensure that a director runs in a certain keyboard mode

CHAPTER 7: Theatrix Reference Manual

(see Hand::set_hotkeys). In the overridden constructor, set the new mode,
call Director::take_over, and then restore the mode.

display
virtual void display() // protected

The display member function is called automatically by Theatrix when the
Director is about to take over. By default, this routine does nothing but can
be overridden to display backgrounds, initialize variables, and so forth.

hide
virtual void hide() /] protected

The hide member function is called automatically by Theatrix after the
Director has given up control. By default, hide does nothing but can be
overridden to clear the screen, display statistics, do a fancy fade-out, and so
on.

iterate_director

virtual void iterate_director() // protected

iterate_director is called by Director::take_over once per cycle of the
dispatching loop. You can override this member to perform tasks that must
occur more often than a timer can provide. Note, however, that the member
will be called at different rates depending on the speed of the processor.

get_next_director

virtual const Type_info& get_next_director() /] protected

Returns the type identification of the next director that should take control
of the game. Theatrix calls this member function automatically after the
Director has given up control. Unless a previous call to set_next_director has
been made or the member function has been overridden, the type
identification for StopDirector is returned, informing Theatrix to terminate
the application.

113

114 C++ Games Programming

set next_director

void set_next_director(const Type_info *dir) // protected

Informs Theatrix which Director should follow the current one.

next director_set

int next_director_set() // protected

Returns 1 if a call to set_next_director has been made with other than a null
pointer; otherwise, returns 0.

Hand (hand.h)

A Hand obiject is the basic unit in a game. As in a play, a Hand (a stagehand)
may or may not actually be visible to the audience. A Hand has one or
several tasks that it knows how to perform, and it relies on its Director for its
cues, which tell the Hand when to perform the task.

Constructor

Hand(Director* dir=0) // protected

Creates a Hand object. This constructor, like the constructor for Director, is

protected, which means that in order to use Hand, it is necessary to derive
_2 from Hand. Note that the Director* parameter is optional. Although it is not
) mandatory to supply this parameter, a Director must be supplied for any of
the Hand object’s cue members to operate. If a Director pointer is not
supplied during construction, then it should be supplied later with a call to
set_director. If any of the Hand class’s member functions is invoked before a
1 Director has been set (with either the constructor or the set_director member
function), a fatal error occurs and the program terminates.

get_mouseposition

void get_mouseposition(int *x, int *y, int *b) // protected
| void get_mouseposition(int *x, int *y) /1 protected

CHAPTER 7: Theatrix Reference Manual

Retrieves information about the mouse pointer. The x and y parameters are
pointers to variables where the data should go. The data values are the
location of the mouse cursor in screen coordinates. The b parameter retrieves
information about the mouse buttons. The b parameter has the following bits
set if the associated buttons are pressed:

bit 0: mouse button 1
bit 1: mouse button 2
bit 2: middle mouse button

initialize
virtual void initialize() // protected

Does nothing. The initialize member function is called automatically by
Theatrix once and only once per execution of the game. The function is
designed to be overridden and is used to perform initialization tasks that
need to happen only once, such as requesting cues or loading .GFX and .SFX
libraries. (In fact, this is the only member function that should be used to
load .GFX and .SFX libararies.) You can also initialize variables at this time.

mouse_cursorshape

void mouse_cursorshape(char *bitmap) /1 protected

Specifies what the mouse cursor should look like. The parameter bitmap is a
character array generated by the Theatrix utility program GMICE.

mouse _invisible

void mouse_invisible() // protected

Hides the mouse. This should be called after mouse_visible.

mouse _visible

void mouse_visible() // protected

Makes the mouse visible. This member function usually appears in a display
member.

116

116 C++ Games Programming

my_director

Director* my_director() // protected

Returns a pointer to the Director on which the Hand depends for cues. This
is useful if the Hand is creating other Hands and needs to supply a Director
for the constructors.

post_message

void post_message(int msg,long data=0) // protected

Posts the message msg. Theatrix delivers the message to any Hands that
either have requested a cue for the message msg or have included it in a
shortcut macro. The data parameter is optional but can be used to send
information, including pointers to more data.

post_netpack

void post_netpack(int netpack) // protected

Sends a packet to the serial port. The packet is received by a remote system,
generating cues for Hands on that system.

request_hotkey_cue

void request_hotkey_cue(int key,callback cb) // protected

Requests a cue when the hotkey key is pressed. Calling this routine tells
Theatrix that when the user presses the key, execute the callback function.
The key parameter can be any of the constants that take the form
SCAN_XXX. These constants are documented later in this chapter. The
callback cb should have a return type of void and can take a single integer
parameter. The parameter sent to the callback is the value key.

request_joystickbutton_cue

void request_joystickbutton_cue(int b,callback cb) // protected

Requests a cue whenever a joystick button is pressed. Calling this routine is
like telling Theatrix, “Whenever the user presses a button, then execute the

CHAPTER 7: Theatrix Reference Manual

routine I have written called cb.” The callback cb should have a return type
of void and take two integer parameters. The two parameters are the distance
from center that the joystick currently is. If the values are zero, then the
joystick is centered. The first value is the horizontal position, and the second
is the vertical position. The range for these values can be retrieved with
Theatrix:.get_joystick_extremes.

request_joystickmove_cue
void request_joystickmove_cue(callback cb) // protected

Requests a cue whenever the joystick is moved. Calling this routine is like
telling Theatrix, “Whenever the user moves the joystick, then execute the
routine I have written called cb.” The callback cb should have a return type
of void and take two integer parameters. The two parameters are the distance
from center that the joystick currently is. If the values are zero, then the
joystick is centered. The first value is the horizontal position, and the second
is the vertical position. The range for these values can be retrieved with
Theatrix::get_joystick_extremes.

request_keystroke_cue
void request_keystroke_cue(int key, callback cb) /1 protected

Requests a cue when the keystroke key occurs. Calling this routine tells
Theatrix that when the user presses the key, execute the callback function.
The key parameter can be any of the constants found in ascii.h and listed
later in this chapter, or it can be a character constant ('a’, 'b', and so on). The
cb parameter is a member function that you write and should have a return
type of void and take a single integer parameter.

request_message_cue
void request_message_cue(int message,callback cb) // protected

Requests a cue whenever the message message is posted. Calling this routine
tells Theatrix that when the message message is posted, to call the callback
function. The callback cb should have return type of void and take two
parameters. The first parameter should be an integer, and the second a Jong.

117

118 C++ Games Programming

request_mouseclick_cue

void request_mouseclick_cue(int b,callback cb) // protected

Requests a cue when a mouse button is pressed. Calling this routine is like
telling Theatrix, “Whenever the user presses button b on the mouse, then
execute the routine I have written called cb.” The b parameter can be either
of the constants LEFTMOUSEBUTTON or RIGHTMOUSEBUTTON. The
callback cb should have a return type of void and take three integer
parameters. The first two parameters are the x and y, respectively, of the
mouse position, and the last parameter is the button that was pressed.

request_mousemove_cue

void request_mousemove_cue(callback cb) // protected

Requests a cue whenever the mouse is moved. Calling this routine is like
telling Theatrix, “Whenever the user moves the mouse, then execute the
routine I have written called cb.” The callback cb should have a return of
type void and take three integer parameters. The first two parameters are the
x and y, respectively, of the mouse position, and the last parameter is the
button that was pressed.

request_netpack_cue

void request_netpack_cue(int netpack,callback cb) // protected

Requests a cue whenever a packet is received from a remote computer.
Calling this routine is like telling Theatrix, “Whenever a packet is received,
then execute the routine I have written called cb.” The callback cb must
have a return type of void and take a single integer parameter.

request_timer_cue

void request_timer_cue(int rate,callback cb) // protected

Requests a cue every rate seconds. Calling this routine tells Theatrix that at
about rate times a second, call the callback function. The rate parameter can
be an integer from 1 to 18. Using 1 means that the function cb is called once
a second, and using 18 means that the function is called 18 times a second.
The callback cb should have a return type of void and take no parameters.

CHAPTER 7: Theatrix Reference Manual

set_director

void set_director(Director*)

This member function is used to tell a Hand from which Director it should
request its cues. If you supply a Director pointer as a parameter to the Hand
constructor, it is not necessary to call this member function.

set_hotkeys

void set_hotkeys(int on) /1 protected

Turns the hotkey mode on and off. By default, the hotkey mode is off. By
sending 1 or the constant ON, the hotkey mode is activated. Conversely,
sending O or OFF turns off the hotkey mode. Remember that keystroke cues
are active only if the hotkey mode is off, and hotkey cues are active only if
the hotkey mode is on.

set_mouseposition

void set_mouseposition(int x, int y) // protected

Forces the mouse pointer to the location specified by x and y. The move
takes effect regardless of the mouse pointer’s visibility.

start_director

void start_director(const Type_info& next) /1 protected

Signals Theatrix to put the argument Director in control. Before doing so,
Theatrix takes control away from the current Director in control after calling
its hide member function.

stop_director

void stop_director() // protected

Signals the Director to give up control. When the stop_director member
function is called, the Director currently responsible for supplying cues
relinquishes control to the Theatrix scheduling loop, which decides what to
do next.

119

120 C++ Games Programming

stop_hotkey_cue

void stop_hotkey_cue(int key,callback cb) // protected

Prevents future cues from occurring. The logical complement to
request_hotkey_cue, this member function undoes what request did.

stop_joystickbutton_cue

void stop_joystickbutton_cue(int b,callback cb) // protected

Prevents future cues from occurring. The logical complement to
request_joystickbutton_cue, this member function undoes what request did.

stop_joystickmove_cue

void stop_joystickmove_cue(callback cb) // protected

Prevents future cues from occurring. The logical complement to
request_joystickmove_cue, this member function undoes what request did.

stop_keystroke_cue

void stop_keystroke_cue(int key,callback cb) // protected

! Prevents future cues from occurring. The logical complement to
request_keystroke_cue, this member function undoes what request did.
stop_message_cue

void stop_message_cue(int message,callback cb) /1 protected

Prevents future cues from occurring. The logical complement to
request_message_cue, this member function undoes what request did.

stop_mouseclick_cue

void stop_mouseclick_cue(int b,callback cb) // protected

Prevents future cues from occurring. The logical complement to
| request_mouseclick_cue, this member function undoes what request did.

CHAPTER 7: Theatrix Reference Manual

stop_mousemove_cue

void stop_mousemove_cue(callback cb) // protected

Prevents future cues from occurring. The logical complement to
request_mousemove_cue, this member function undoes what request did.

stop_netpack_cue
void stop_netpack_cue(int netpack,callback cb) /1 protected

Prevents future cues from occurring. The logical complement to
request_netpack_cue, this member function undoes what request did.

stop_timer_cue
void stop_timer_cue(int rate,callback cb) // protected

Prevents future cues from occurring. The logical complement to
request_timer_cue, this member function undoes what request did.

MusicHand (music.h)

MusicHand is not used as a base class for any of the classes in Theatrix.
Although it is safe to assume that each graphical character in a game might
make sounds, it is not safe to assume that each character might want to play
music. MusicHand can be used as a base class for your own music-handling
class. More often you will instantiate an object of MusicHand and use that
object in one of your Director objects.

Constructor

MusicHand(char *sc)

Creates a MusicHand object. The sc parameter is the name of an .XMI file
from which the MusicHand reads music clips.

initialize

virtual void initialize() // protected

121

122 C++ Games Programming

Initializes the MusicHand. This member function is called automatically by
Theatrix.
isconducting

int isconducting()

Returns 1 if MusicHand was able to detect and initialize a sound card.
Otherwise, returns 0.

load_score
void load_score(char* fname)

Loads an .XMI file. This file replaces any file specified at construction.

music_clip_is_playing
int music_clip_is_playing()

Returns 1 if a clip is currently being played; otherwise, returns a 0.

play_music_clip
void play_music_clip(int index)

Begins the music clip found at location index within the .XMI file supplied to
the constructor. The index parameter is an integer value that must be greater
than zero and less than or equal to the number of music clips in the .XMI file.

stop_music_clip
void stop_music_clip()

Interrupts a sound clip that is being played. If no clip is being played, the call
is ignored.

Performer (perform.h)

Performer provides basic graphics support. Classes derived from Performer
can load .GFX libraries and display bitmaps on the active video page.

CHAPTER 7: Theatrix Reference Manual

Constructor

Performer(Director* dir=0) // protected

Constructs a Performer object. If possible, it is recommended that the
Director* parameter be supplied here. If it is not, set_director must be called
before any cues are requested.

get_char_height
int get_char_height(char ch)

Returns the height (in pixels) of the character ch. Note that this value may
vary depending on the active .GFX font.

get_char_width

int get_char_width(char ch) // protected

Returns the width (in pixels) of the character ch. Note that this value may
vary depending on the active .GFX font.

get_image_height
int get_image_height(int image_number) // protected

Returns the bitmap height (in pixels) of the bitmap located at location
image_number in the active .GFX library.

get_image_width

int get_image_width(int image_number) /] protected

Returns the bitmap width (in pixels) of the bitmap located at location
image_number in the active .GFX library.
get_num_images

int get_num_images() // protected

Returns the number of bitmaps contained in the active .GFX library.

123

124 C++ Games Programming

load_gfxfont

void Toad_gfxfont(char* fontlibname) // protected

Loads the .GFX font library fontlibname and makes it the active font for this
Performer. A .GFX font is a .GFX library with 36 bitmaps (the alphabet and
10 digits).

load_gfxlib

void load_gfxlib(char* Tibname) // protected

Loads a .GFX file (a .GFX file created with GFXMAKE) into memory and
marks it as the active library for this Performer. If libname has already been
loaded by another Performer, then it is not loaded again, but it is marked as
the active library for this Performer. This member function should be called
only in an initialize routine.

set_gfxfont

void set_gfxfont(char* fontlibname) // protected

Marks fontlibname as the active font for this Performer. Note that it is
necessary to call this member function only if the Performer needs access to
more than one .GFX font library.

set_gfxlib

void set_gfx1ib(char* 1ibname) // protected

Marks the active library for the Performer as libname. Note that it is
necessary to invoke this member function only if the Performer needs to
access images in more than one .GFX library.

| show_clipped_image
void show_clipped_image(int x,int y,int image_number) //protected

Displays the bitmap image_number of the currently active .GFX library at
screen location x,y. The bitmaps in the .GFX library are numbered from 1.
Unlike show image and show_frame, show_clipped_image observes the

CHAPTER 7: Theatrix Reference Manual

current clipping boundaries. By default, the clipping boundaries are set to
include the whole screen. show_clipped_image does support transparency.

show_frame

void show_frame(int x,int y,int image_number) // protected

Displays the frame image_number of the currently active .GFX library at
screen location x,y. The bitmaps in the .GFX library are numbered from 1.
Unlike show_image, show_frame does not support transparency. Because it
does not, it is faster than show_image.

show_image
void show_image(int x,int y,int image_number) // protected

Displays the bitmap image_number of the currently active .GFX library at
screen location x,y. The bitmaps in the .GFX library are numbered from 1.
The show_image function supports transparency (pixels with value zero are
not drawn), so this is a typical routine for animation.

show_number
void show_number(int x,int y,int number) /] protected

Displays the number number at x,y, using the active .GFX font. x and y are
expressed in screen pixels. number should be positive.

show_print
void show_print(int x,int y,char* string) /1 protected

Displays the string at x,y using the active .GFX font. string should contain
only letters, digits, and spaces. x and y are expressed in screen pixels and refer
to the upper left corner of the text.

Player (player.h)

Player is used in conjunction with SceneDirector. By using a SceneDirector
with several Player objects, you can animate multiple characters
simultaneously.

125

126 C++ Games Programming

Constructor

Player(char* gl1=0,char* s1=0,int intv=1)

Creates a Player object. gl is the .GFX library in which the character’s
graphics are stored, and sl is the .SFX library in which the sound effects for
that chracter are stored. intv is the update interval for the character. This
interval defaults to 1, which means that the Player is updated on every tick
of the timer. A value of 2 means that the Player is updated every two timer
ticks. The intv argument can be any positive number.

appear

void appear()

Causes the Player to become visible.

clip

void clip(int x1,int yl,int x2,int y2)

Activates clipping for the Player. x1,y1 indicates the upper left corner of the
new clipping region, and x2,y2 indicates the lower right corner.
disappear

void disappear()

Causes the Player to become hidden.

get_imageno
short int get_imageno()

Returns the current image number for the Player.

getheight
short int getheight() const

Returns the Player’s current height in pixels.

CHAPTER 7: Theatrix Reference Manual

getwidth

short int getwidth() const

Returns the Player’s current width in pixels.

getx

short int getx() const

Returns the Player’s current horizontal position.

gety
short int gety() const

Returns the Player’s current vertical position.

initialize
void initialize() // protected

Loads the .GFX file for the player. This member function is called by
Theatrix, but it is sometimes useful to override it to include other tasks.

isclipped
int isclipped()

Returns 1 if a clipping region is active; otherwise, returns 0.

isvisible
int isvisible()

Returns 1 if the player is visible, otherwise, returns 0.

set_imageno

void set_imageno(short int index)

127

128 C++ Games Programming

Specifies the .GFX bitmap number. The index parameter specifies which
image to use from the .GFX file. If the Player changes from frame to frame,
this member function can be used to modify which image is used in the .GFX
library to draw the character.

. setinterval
void setinterval(short int inv)

Sets the Player’s update interval to inv.

setx

void setx(short int nx)

Sets the Player’s current X position to nx.

setxy

void setxy(short int nx,short int ny)

Sets the Player’s current X and Y positions to nx and ny.

sety

void sety(short int ny)

Sets the Player’s current Y position to ny.

stillframe
void stillframe(short int im,short int wait)
Displays image im at the current position and delays for wait ticks of the
timer.
unclip
void unclip()

Deactivates the current clipping region. If no clipping region has been set,
then the call is ignored.

CHAPTER 7: Theatrix Reference Manual

update_position
virtual void update_position()

Does nothing. The intended purpose for this member function is to be
overridden by a derived class. The new member function is then called by
SceneDirector and should calculate a new position based on the Player’s role
in your game.

SceneDirector (scenedir.h)

SceneDirector is designed for use with Player. Using this combination, it is
possible to animate multiple characters simultaneously.

Constructor

SceneDirector(char* scfile)

Constructs a SceneDirector object. scfile is a .PCX file that is used as a
background for the scene.

display
void display() /] protected

Clears video, displays the background image, and requests internal cues. This
member function is called automatically by Theatrix when the Director
object first takes control, and it is sometimes useful to override it. When you
do, your derived class’s member function should call SceneDirector::display
in addition to whatever the override does.

on_escape

void on_escape(int) // protected

Stops the Director. If you don’t want the Director to stop when the Esc key is
pressed, then override this function with an empty version.

129

130 C++ Games Programming

on_timer

void on_timer() // protected

Updates the screen. This is called automatically by Theatrix once each clock
tick. You can override the function to add behavior.

SceneryDirector (scenery.h)

SceneryDirector provides a basic, simple interface for displaying background
scenery.

Constructor

SceneryDirector(char *pcxfile, short int trans = ClearEveryTime)

Creates a SceneryDirector object. The pcxfile parameter is the name of the
PCX file for use as a background. The optional trans parameter defines how
the SceneryDirector displays the background. The default value
ClearEveryTime means that the whole screen is cleared (to color zero), and
then the .PCX file is displayed. Alternatively, using the value NoTransition
causes SceneryDirector to display images without clearing video memory.
Also, values greater than or equal to 1 can be sent to the SceneryDirector
constructor to invoke a fade-in effect.

1 display_original_scenery

virtual void display_original_scenery();

Displays the original scenery from the hidden page. Copies the hidden page
buffer to the active and visible page buffers.

get_next_director

virtual const Type_info& get_next_director() // protected

Returns the ID of the next Director. Unless a previous call to
set_next_director has been made, this member returns NextDirector. This

CHAPTER 7: Theatrix Reference Manual

member is called by Theatrix and can be overriden to return a specific
Director identification of your choice.

refresh_display

virtual void refresh_display();

Sets the active page to be the visible page and what was the visible page to be
the active page. Then copies the now-visible page buffer into the active page.
This function hides the mouse cursor before doing any page swapping and
restores the mouse cursor afterward.

Theatrix (theatrix.h)

Theatrix is the object that encapsulates the whole game. It is designed as a
base class for an object that will be instantiated in the main function of the
program. Any Director-derived objects in the game should be created in the
constructor of the Theatrix-derived class.

Constructor
Theatrix(char* str) // protected
Creates a Theatrix object. The str parameter is a string that appears on the
startup screen and is typically the name of the game.
enable_joystick

void enable_joystick()
Instructs Theatrix that the game uses the joystick. Among other things, this
activates the joystick calibration sequence.

enable_netpacks

void enable_netpacks()

Activates the netpack event system. This is to be used if the game makes use
of the serial communications abilities of Theatrix.

131

132 C++ Games Programming

go
void go(int index=0)

This is the member function that makes it all happen. Theatrix initializes
itself and puts in charge the Director indicated by index. The default O
parameter causes the first Director created to be the first to be executed.
Sending 1 causes the second Director created to be executed first, and so on.

go
void go(const Type_info& d)

This routine acts just like the previous version except that it starts the game
with the Director specified as the parameter d.

joystick_extremes

void joystick_extremes(int *x1, int *yl, int *x2, int *y2)

Returns the extreme values that the joystick can return. Because the values
returned by a joystick differ from one joystick to another (and from one
computer to another), the extreme values that are retrieved during joystick
calibration can be retrieved using this member.

set_xms

void set_xms(int mode)

Activates or deactivates XMS memory usage. Sending 0 or OFF prevents
Theatrix from using any XMS memory. Conversely, sending 1 or ON informs
Theatrix that if it is available, XMS should be used. By default, XMS memory is
used. To take effect, this member function must be called before go is called.

use_commport

void use_commport(int port)

Instructs Theatrix to use the serial port port for serial communications
(netpacks). If enable_netpacks is not also called, this call is meaningless (and
harmless). By default, Theatrix uses comm 1.

CHAPTER 7: Theatrix Reference Manual

use_video_mode

void use_video_mode(int vmode)

Instructs Theatrix to use vmode, instead of the default video mode defined in
settings.h. To take effect, this member function must be called before go is
called.

VideoDirector (viddir.h)

Derived from Director, VideoDirector provides a set of routines useful in
managing graphic pages. Specifically, VideoDirector supports page flipping.

Constructor

VideoDirector() // protected

Constructs a VideoDirector object. Because this is a protected constructor, it
is possible to create such an object only by using derivation.

active_page
static int active_page()

Returns the current active video page. This is always either O or 1.

fill_background_buffer

void fill_background_buffer(int source_page) /] protected

Copies the contents of video page source_page to the background buffer page
(page 2). Typically, this member function is called after a background has
been loaded from disk or constructed on page 0 or page 1. Then portions or all
of the background buffer page can be used to restore damaged sections of the
active page.

flush_patch

static void flush_patch(int x1,int yl,int x2,int y2)

Copies a portion of the active page to the visual page. This is the only
member function that draws directly to the visual page. This is useful when a

133

134 C++ Games Programming

change made to the active page must be synchronized and when a complete
page flip would be inconvenient.

init_video
void init_video() // protected

Clears and resets the page-flipping mechanism. Both pages involved with the
page flipping (pages 0 and 1) are cleared to black (color zero), and the page-
flipping mechanism is reset.

restore_page

void restore_page() /1 protected

Copies the entire background page (page 2) to the active page. This is useful
for erasing all sprites at once.

restore_patch

static void restore_patch(int x1,int yl,int x2,int y2)

Copies a portion of the background page (page 2) to the active page. This is
useful for erasing sprites drawn on the active page. Because a clean copy of
the background can be stored in the background page (with a call to
fill_background_buffer), the restored patch looks like the original.

set_synch_patch

static int set_synch_patch(int x1,int yl,int x2,int y2)

Marks a patch (or rectangle) of the active page to be copied to the active page
later. Several of these patches can be marked in this manner, and then all of
them can be synchronized at once with a call to synch_patches.

show_pcx

static int show_pcx(char* pcxfile)

Reads pcxfile from disk and displays it on the active video page. Also, the
palette found in pcxfile is installed. If pcxfile is missing or corrupted,
show_pcx returns NOT_OK. If all goes well, it returns OK.

CHAPTER 7: Theatrix Reference Manual

show_video
static void show_video(char* fname,int X,int y,int nonstop=0)

Plays an .FLC file (video). The FLC file name is specified by the fname
parameter. x and y indicate where the video should appear on the screen
(upper left corner). The optional nonstop parameter can be set to 1 if the
video should be played in a continuous loop.

stop_video

static void stop_video()

Interrupts the .FLC file. If no file is playing, the call is ignored.

swap_video_pages
void swap_video_pages() // protected

Displays the active video page and hides the visual page. Typically,
swap_video_pages is called after a scene has been constructed on the active
(hidden) page. The routine then displays the new image, and the new active
page (the old visual page) is ready for the construction of the next scene.

synch_patch

static void synch_patch(int x1,int yl,int x2,int y2)

Copies a portion of the visual page to the active page.

synch_patches
static int synch_patches()

Copies all the patches marked with set_synch _patch from the visual page to
the active page. The return value is the number of patches that were marked
before the call. Once this member function is called, all the patches are
unmarked.

135

136 C++ Games Programming

synch_video_pages
static void synch_video_pages()

Copies the entire visual page to the active page. This is useful for situations
in whch it is necessary to synchronize both video pages.

video_playing
static int video_playing()

Returns 1 if an .FLC file is playing; otherwise, returns 0.

visual_page

static int visual_page()

Returns the current visual page. This is always either 0 or 1.

VocalHand (vocal.h)

The VocalHand class supports sound effects and voices by maintaining
libraries of and playing back sound clips in the .VOC format. It is possible to
derive directly from VocalHand and use the resulting class to do all the
sounds for the game, or you can have each Performer play its own sounds.
The latter is possible because Performer is derived from VocalHand.

Constructor

VocalHand(Director* d=0)

Creates a VocalHand object. Theatrix automatically detects and initializes
the sound card and driver. If no sound card is detected, then calls to
play_sound_clip are ignored.

get_num_clips
int get_num_clips()

Returns the number of sound clips in the active .SFX library.

CHAPTER 7: Theatrix Reference Manual

get_sound_clip_length
int get_sound_clip_length(int clip_index)

Returns the length (in bytes) of the clip at the location clip_index in the
active .SFX library.

load_sfxlib

void load_sfxlib(char* sfxlibname)

Loads the sound clip library sfxlibname (an .SFX file created with SFXMAKE)
into memory. This member function should be called only in an initialize
routine.

play_sound_clip
void play_sound_cilp(int clip_index)

Plays the sound clip in the active .SFX library at the location clip_index. The
clip is played until it is interrupted by another call to play_sound_clip or the
end of the clip is reached.

set_sfxlib

void set_sfxlib(char* sfxlibname)

Marks sfxlibname as the active sound library for this VocalHand. It is
necessary to call this member function only if the VocalHand must play
sound clips from more than one .SFX library.

sound_clip_is_playing
int sound_clip_is_playing()

Returns TRUE if a sound clip is currently being played, and FALSE if the
sound card is idle.

137

138 C++ Games Programming

stop_sound_clip

void stop_sound_clip()

Stops the sound card from playing the rest of a sound clip. If no sound is
being played at the time of the call, the call is ignored.

Macros

Theatrix provides a set of macros to connect events to callbacks and to define
mouse cursor screen regions. These macros define tables that the system uses
to make the associations. Other miscellaneous macros are also discussed here.

The CUELIST (hand.h)

The CUELIST table associates events with callback functions. The program
includes the DECLARE_CUELIST statement in a class declaration and puts a
CUELIST declaration in the executable code within scope of the class
declaration, as shown in this example:

class MyHand : public Hand {
Ll
DECLARE_CUELIST
void on_key_a();
void on_timer();

s
CUELIST(MyHand)
KEYSTROKE('a',on_key_a)
TIMER(1,on_timer)
ENDLIST
CUELIST

CUELIST(class_name)

Begins a CUE table definition. class_name is the name of the class that
contains the cues.

CHAPTER 7: Theatrix Reference Manual

DECLARE_CUELIST

DECLARE_CUELIST

Declares that a class will have a CUELIST table. This statement must appear
in the class declaration.

ENDCUELIST

ENDCUELIST

Terminates the CUELIST table.

HOTKEY

HOTKEY (key,cue_function)

Defines a relationship between the key key and the function cue_function.
This means that whenever the user presses key, Theatrix invokes
cue_function automatically. The cue_function function should be provided
without class specification and without parentheses.

JOYSTICKBUTTON

JOYSTICKBUTTON(b,cue_function)

Requests that cue_function be called whenever the button b is pressed on the
joystick. The b argument specifies the button and may be BUTTONONE or
BUTTONTWO. The cue_function callback should be provided without class
specification and without parentheses.

JOYSTICKMOVE

JOYSTICKMOVE (cue_function)

Informs Theatrix that whenever the joystick is moved, cue_function should
be invoked. The cue_function callback should be provided without class
specification and without parentheses.

139

140 C++ Games Programming

KEYSTROKE

KEYSTROKE (key,cue_function)

Establishes a connection between key and cue_function. When the user
presses key, Theatrix invokes cue_function. The cue_function function
should be provided without class specification and without parentheses.

MESSAGE

MESSAGE(msg,cue_function)

Instructs Theatrix to invoke the cue_function whenever the message msg is
posted. cue_function should be provided without class specification and
without parentheses.

MOUSECLICK

MOUSECLICK(button,cue_function)

Establishes a connection between the mouse button button and the
cue_function callback. The button argument may be
RIGHTMOUSEBUTTON or LEFTMOUSEBUTTON. When the user presses
a mouse button, Theatrix will invoke the cue_function. The cue _function
callback should be provided without class specification and without
parentheses.

MOUSEMOVE

% MOUSEMOVE (cue_function)

Informs Theatrix that whenever the mouse moves, cue_function should be
invoked. cue_function should be provided without class specification and
without parentheses.

NETPACK
| NETPACK(packet, cue_function)

| Requests that if the packet is received at the serial port, cue_function should
| be called. cue_function should be provided without class specification and
1 without parentheses.

CHAPTER 7: Theatrix Reference Manual

TIMER

TIMER(rate,cue_function)

Instructs Theatrix to invoke the cue_function at rate times per second.
cue_function should be provided without class specification and without
parentheses.

The CURSORLIST (scenery.h)

The CURSORLIST table associates events with callback functions. The
program includes the DECLARE_MOUSECURSORS statement in a class
declaration and puts a CURSORLIST declaration in the executable code
within scope of the class declaration, as shown in this example:

class MyHand : public Hand {
Il o
DECLARE_MOUSECURSORS
void click_left();
void click_up();
void click_down();
void click_right();

1

CURSORLIST(MyHand)
MOUSE_CURSOR(0, 0,105,239, LEFTARROWCURSOR, click_left)
MOUSE_CURSOR(106, 0,211,199, UPARROWCURSOR, click_up)
MOUSE_CURSOR(106,200,211,239, DOWNARROWCURSOR, click_down)
MOUSE_CURSOR(212, 0,319,239, RIGHTARROWCURSOR, click_right)
ENDCURSORLIST

CURSORLIST

CURSORLIST(class_name)

Begins a CURSOR table definition. class_name is the name of the class that
contains the cursor list.

141

142 C++ Games Programming

DECLARE_MOUSECURSORS

DECLARE_MOUSECURSORS

Declares that a class will have a CURSORLIST table. This statement must
appear in the class declaration.

ENDCURSORLIST

ENDCURSORLIST
Terminates the CURSORLIST table.

MOUSECURSOR

MOUSE_CURSOR(x1,y1,x2,y2,cursorshape,callback)

Defines a mouse cursor region and a callback function to be called if the user
clicks in that region. The x1 and y1 arguments define the upper left screen
coordinates. The x2 and y2 arguments define the lower right screen
coordinates. The cursorshape argument is a pointer to a character array that
defines the cursor’s shape. You can use one of the globally defined constants
listed in the next discussion for each cursor shape, or you can design your
own and use the GMICE utility program, as described in Chapter 6, to
convert your graphical mouse cursor to a character array. The callback
argument is the address of a function that Theatrix calls when the user clicks
the left mouse button within the screen region defined by the coordinate
arguments,

Mouse Cursor Shapes (scenery.h)

Following are cursor shape global symbols that you can use for the
cursorshape argument in the MOUSECURSOR macro. Figure 4.13 (Chapter
4) shows what all the cursors except the default cursor look like. The default
cursor is the standard upward-left pointing arrow.

CHAPTER 7: Theatrix Reference Manual

UPPERLEFTARROWCURSOR
UPARROWCURSOR
UPPERRIGHTARROWCURSOR
LEFTARROWCURSOR
CENTERCURSOR
RIGHTARROWCURSOR
LOWERLEFTARROWCURSOR
DOWNARROWCURSOR
LOWERRIGHTARROWCURSOR
DEFAULTCURSOR

O 0 O 90 00 0 0 99

Assert (debug.h)

Assert

Assert(condition);

The Assert macro works just like the Standard C assert macro. Theatrix
implements its own version to allow an assertion to find its way to the
functions that make an orderly shutdown of the game runtime environment,
including the release of interrupt vectors.

Adjusting Theatrix (settings.h)

The following constant values define ranges and operating limits for the
library. For most games, the values assigned to these settings suffice, but a
large or unusual game may need to change one or more of these values. In
this case, modify the value and recompile Theatrix.

DEFAULT_VIDEO_MODE

This is the mode number that Theatrix uses if one is not supplied using
Theatrix::use_video_mode. This constant is set to 22, which is Mode X, but
it can be changed if you want Theatrix to use another mode by default.

143

144 C++ Games Programming

MAXDIRECTORS

Theatrix has a limit of 20 Directors to a game. If you need to use more, then
increment this constant.

MAXFXLIBS

Theatrix allows a game to load as many as 30 .GFX and .SFX libraries. If you
require more, increment this constant.

MAXHANDS

Theatrix has a limit of 250 Hands to a game. If you find that this is not
enough, then increment this constant.

MAXMESSAGE

Theatrix allows messages ranging in value from 0 to 200. This value can be
increased to allow higher values as messages.

MAXNETPACK

Theatrix allows netpacks (packets sent over serial connections) to range in
value from 0 to 100. This value can be increased. However, values greater
than 255 do not transmit correctly, because the netpack system transfers
bytes and a byte cannot contain a number higher than 255.

NUMPATCHES

Theatrix allows as many as 25 synch patches to be set at once (refer to
VideoDirector::set_synch_patch). If you need more, increment this constant.

CHAPTER 7: Theatrix Reference Manual 145

Keyboard ASCII Codes (ascii.h)

The global symbols shown in Table 7.1 are ASCII values for the keystrokes
that you can use as the key argument in a KEYSTROKE statement within a
CUELIST table.

Table 7.1 Constants for keystroke cues

Symbol BIOS Key Symbol BIOS Key Symbol BIOS Key
END 0x4f00 INS 0x5200 F1 0x3b00
LF 0x4b00 DEL 0x5300 F2 0x3c00
LEFTARROW 0x4b00 ESC 0x001b F3 0x3d00
HOME 0x4700 ESCAPE 0x001b FA 0x3e00
upP 0x4800 ENTER 0x000D F5 0x3f00
UPARROW 0x4800 SPACE 0x0020 Fé& 0x4000
PGUP 0x4900 SPACEBAR 0x0020 F7 0x4100
RT 0x4d00 F8 0x4200
RIGHTARROW 0x4d00 F9 0x4300
PGDN 0x5100 F10 0x4400
DN 0x5000

DOWNARROW 0x5000

Keyboard Scan Codes (scancode.h)

The global symbols shown in Table 7.2 are the scan codes that you can use as
the key argument in a HOTKEY statement within a CUELIST table.

146 C++ Games Programming

Table 7.2 Constants for hotkey cues

Scan Scan Scan
Symbol Code Symbol Code Symbol Code
SCAN_SPACE 0x39 SCAN_F1 0x3b SCAN_A Oxle
SCAN_ENTER Ox1lc SCAN_F2 0x3c SCAN_B 0x30
SCAN_INSERT 0x52 SCAN_F3 0x3d SCAN_C Ox2e
SCAN_DEL 0x53 SCAN_F4 Ox3e SCAN_E 0x12
SCAN_END Ox4f SCAN_F5 Ox3f SCAN_F 0x21
SCAN_PGDN 0x51 SCAN_F6 0x40 SCAN_G 0x22
SCAN_PGUP 0x49 SCAN_F7 0x41 SCAN_H 0x23
SCAN_HOME 0x47 SCAN_F8 0x42 SCAN_I 0x17
SCAN_LEFT Ox4b SCAN_F9 0x43 SCAN_J 0x24
SCAN_UP 0x48 SCAN_F10 Ox44 SCAN_K 0x25
SCAN_RIGHT Ox4d SCAN_L 0x26
SCAN_DOWN 0x50 SCAN_M 0x32
SCAN_BKSPACE 0x0e SCAN_N 0x31
SCAN_TAB OxOf SCAN_O 0x18
SCAN_ESCAPE 0x01 SCAN_P 0x19
SCAN_ESC 0x01 SCAN_Q 0x10
SCAN_CTRL Ox1d SCAN_R 0x13
SCAN_LSHIFT 0x2a SCAN_S Ox1f
SCAN_RSHIFT 0x36 SCAN_T 0x14
SCAN_PRINTSCREEN 0x37 SCAN_U 0x16
SCAN_ALT 0x38 SCAN_V 0x2f
SCAN_NUMLOCK 0x45 SCAN_W 0x11
SCAN_SCROLLLOCK Ox46 SCAN_X 0x2d
SCAN_Y 0x15

SCAN_Z Ox2c

CHAPTER 7: Theatrix Reference Manual

Controller Button Symbols (standard.h)

The symbols shown in Table 7.3 define button values on the mouse and
joystick and are used in statements in the CUELIST table.

Table 7.3 Mouse and joystick button constants

CUELIST Statement Symbol Value
MOUSECLICK LEFTMOUSEBUTTON 1
. RIGHTMOUSEBUTTON 2
JOYSTICKBUTTON BUTTONONE 1
! BUTTONTWO 2

You can also use these symbols as arguments to Theatrix functions that
expect button arguments.

147

Theatrix Technical
Specifications

“Our life is frittered away by detail ...Simplify, simplify.”
Henry David Thoreau

This chapter explains the Theatrix internal class structure and data files. We
assume that you understand Theatrix well enough to use it and that now you
are interested in knowing more about how it works. This chapter is a
technical discussion of the operation of the class library, which will be of
interest to programmers who want to enhance or modify the library. It also
provides insight into the best ways to take advantage of the software
framework when you design your games. You will learn about:

@ How the classes operate
@ How Theatrix uses data files

149

150 C++ Games Programming

Classes and Data Structures

The implementation of Theatrix consists of several class hierarchies that
combine to support the interface that you learned in Chapters 5 and 7. Those
chapters taught you how to use the Theatrix library, so they presented only
the public interfaces of the exposed classes and the protected interfaces of the
classes from which you derive to build your game. This chapter delves more
deeply into how Theatrix works and what the underlying classes are.

Theatrix

You learned to build a game by first deriving a game class from the Theatrix
class and then having your derived class encapsulate and instantiate the
components of the game: scenery, players, directors, sound effects, music,
and so on. For this discussion you can refer to theatrix.h in Appendix B and, if
you want to see more of the details of implementation, to theatrix.cpp on the
included CD-ROM in \THX\SOURCE\THEATRIX.

A game must instantiate one and only one object derived from the
Theatrix class before it constructs any of the other components of the game.
The Theatrix constructor initializes a current_game global pointer to type
Theatrix with its own address after asserting that the pointer is set to zero.
That assertion ensures that no other Theatrix objects are instantiated. Other
parts of the game use the current_game pointer to address the game object.
Because the pointer is global, your instantiation of the object may be local.
The demo games instantiate in their main functions an auto object of a type
derived from Theatrix.

List of Directors

The Theatrix class maintains an array of pointers to the directors that
constitute the game. When an object of type Director or one derived from
Director is constructed, the Director constructor adds the object’s address
to the Theatrix class’s array of director pointers by calling the

CHAPTER 8: Theatrix Technical Specifications

Theatrix::add_director function through the current_game pointer. The
order of director object pointers in the array represents the logical order of
directors in the game. That order figures prominently later.

Message Servers

The Theatrix class includes eight event server objects. These objects are
part of the mechanism that dispatches event messages to components of
the game. The complex event sensing and message dispatching procedure
spans several classes and uses several data structures. The complexity of
this approach provides the most efficient mechanism to achieve the desired
result.

Event servers test for hardware events, and, when events occur, the servers
cause the dispatching of messages to the callback functions for all game
components that have requested cues for the specific events. The servers do
not themselves dispatch the messages. That function is done by the folder
mechanism in the Director class, but the event servers launch the folder
functions that dispatch the messages.

There are event servers for events related to ASCII keystrokes, hotkey
presses, timers, generic messages, mouse clicks, mouse movements, joystick
motion and keypresses, and serial port network packets.

Event servers are declared static in the Theatrix class declaration. They
would not need to be static to work properly, because there can be only one
Theatrix object instantiated at any one time. The static declaration is used
for performance reasons. Event sensing runs constantly, testing every event
device for events and launching message dispatching when events occur. By
making the server objects static, we avoid the overhead added by the
compiler to initialize and dereference the this pointer for each use of a
server object.

Each of the event servers differs according to the device it polls, but they
all operate in a similar fashion. You can refer to these header files in
Appendix B as you read this discussion:

151

152

C++ Games Programming

Server Header file
Timer fimesrvr.h
Keystroke keysrvr.h
Hotkey kdsrvr.h
Message msgsrvr.h
Mouse click mcsrvr.h
Mouse movement mmesrvr.h
Joystick jssrvr.h
Network packet netsrvr.h

Each of the header files has an associated .CPP file on the CD-ROM in
\THX\SOURCE\THEATRIX.

Messages are dispatched to objects derived from the Hand class. The
object receiving the dispatch must be associated with an object derived from
the Director class, either by being derived from Director or by receiving cues
from the current Director object in control of the game. Each Director object
has tables of event registrations. You will learn more about these tables,
which involve objects called folders and handlers, later in the discussion
about the Director class.

Event servers poll the devices and report events by calling the dispatch
function associated with a folder object that contains the registrations of
Hand functions with events.

The keystroke server is a typical event server. We will discuss its
operation, and you can apply that knowledge to your understanding of the
other servers.

All server classes are derived from the Server abstract base class, which is
declared in server.h:

class Server {

virtual void startup() { }
virtual void shutdown() { }
public:

virtual void check(Folder&) = 0;
¥

CHAPTER 8: Theatrix Technical Specifications 153

Some servers override the virtual startup and shutdown functions if their
devices have initialization and shutdown procedures before they can be used.
Servers that have no such procedures do not override these functions. The
KeystrokeServer class, shown next, does not.

class KeystrokeServer : public Server ({
pubTlic:

void check(Folder&);

HH

When a Director object runs a game, it has a dispatching loop from which it
calls the check function for all the device servers. Your program does not
concern itself with the dispatching loop. The Director class takes care of it.
The Director class includes folder objects for each of the devices, and
Director passes to the server’s check function a reference to the folder object.
As you will see later, folder objects are specialized for the devices they
support. Here is the KeystrokeServer::check function.

void KeystrokeServer::check(Folder& f1d)

{
unsigned char ascii,aux;
fg_intkey(&ascii,&aux); /] test for a keystroke
if (ascii || aux)
fld.dispatch(ascii, aux); // pass the keystroke value
}

The KeystrokeServer::check function tests to see whether the user has
pressed a key. If a key has been pressed, the check function calls the dispatch
function associated with the folder object that was passed by reference as an
argument. The check function passes to the dispatch function the two values
that represent a keystroke. We used a function call from the Fastgraph library
to test for the keystroke, but a BIOS call would have done the job just as well.
If the user presses an extended key (non-ASCII), the ascii variable is set to
zero and the aux variable is set to the key’s keyboard scan code. If the user
presses a regular ASCII key, the ascii variable is set to the ASCII value of the
keystroke ('a', 'A', 'b', 'B', and so on) and the aux variable is set to zero.

154 C++ Games Programming

The server only senses the hardware event. It is the folder’s job to
determine whether there are game components registered to receive a cue
when the particular key is pressed.

Hardware Enable

The Theatrix class includes functions that the game application program can
call to enable the use of XMS, the joystick, and the serial port for multiplayer
games, and to set the video mode. The game program calls these functions
after instantiating an object of a class derived from Theatrix and before using
that object to launch the game, as shown here:

class MyGame : public Theatrix {
lilsss
¥

int main()

(
MyGame mygame; // instantiate the game object
mygame.enable_joystick(); // game uses the joystick
mygame.go(); // launch the game
return 0;

System Startup

The game program calls the Theatrix::go function to launch the game. The go
function sets things up so that the first instantiated Director object will run
the game. To specify starting with a different Director, include its class
typeid or its relative-to-zero position as an argument to the go function.

The go function calls the startup functions for each of the server objects
and calls static startup functions for the VocalHand and MusicHand classes,
too. These two classes have startup procedures that load and initialize sound
effects drivers and MIDI drivers into memory.

The go function calls the static Hand::initialize_hands member function
class to initialize all instantiated Hand objects. This is the only time that

CHAPTER 8: Theatrix Technical Specifications

those objects’ initialization function is called, so it is important that the
program declare all instances of Hand objects for the entire game before
calling the go function.

The go function initializes the video mode and then the mouse. Then the
function runs a director-launching loop calling, in succession,
Director::display, Director::take_over, and Director::hide for the Director
object that is being given control. All the game activity for the scene being
directed takes place from within these three function calls. When they
return, the director-launching loop calls the old director’s get_next_director
function to compute an index to a new director to take over. The index is a
subscript into the list of directors that the Theatrix class maintains. The
director-launching loop continues until its call to find_director_index returns
-1, which means that the game is over.

System Shutdown

When a game is over, the Theatrix object shuts down the event devices
and the video mode in the reverse order in which it started them up. Each
of the devices has a shutdown function that takes care of its own
shutdown procedures—releasing interrupt vectors, restoring memory
allocations, and so on.

System Abort

The Theatrix class includes fatal functions that do an orderly close down of
the system before aborting. These functions, declared in theatrix.h display
messages on the screen after restoring all interrupts and the video mode. One
of the fatal functions accepts a char* argument that points to the message to
be displayed. This function is called from within the library when it finds
exceptional conditions that require the program to stop.

The other fatal function supports the Assert macro, defined in theatrix.h.
The function accepts two strings and an integer. The first string is the error
condition, the second is the name of the source code file where the error was
encountered, and the integer is the source code line number. The Assert
macro replaces the Standard C assert macro to allow the game program to
make an orderly shutdown of its devices prior to aborting due to a failed
assertion.

155

156 C++ Games Programming

Hands

The Hand base class exists to support the registration of derived class objects
for event messages and to support mouse operations. You can refer to hand.h
in Appendix B during this discussion. Directors and other game components
derive from Hand so that they can request and receive event messages.

The Hand base class has only four data members: a pointer to the Director
object that is in charge of the Hand object (when the Hand obiject is itself a
Director, this is a pointer to itself); an indicator to tell whether the Hand
object is using the mouse; a static count of instantiated Hand objects; and a
static array of pointers to instantiated Hand objects.

When a Hand object is instantiated, its constructor accepts a pointer to the
Director that directs the actions of the Hand. The object stores that pointer
for later use and appends its own address (the this pointer) to the array of
instantiated Hand objects.

Cue Registries

Most of the members of the Hand class support the registration of the Hand
object to receive cues based on events. There are request and stop functions
for each of the kinds of cues that a Hand can receive.

The hand.h file also defines the macros that implement the CUELIST
table. When a derived class includes the DECLARE_CUELIST macro, the
C++ preprocessor translates that statement into the declaration of a static
array of structure objects that represent cues. Each element in the array
contains an event code, a data byte, and the address of a callback function.
| The DECLARE_CUELIST macro also declares an inline function named
| GetMessageMap that returns the address of the array. That function
1 overrides a virtual function in the base Hand class that returns a null
pointer.

The CUELIST macro expands into the definition of the array that the
DECLARE_CUELIST macro declares. There are several other macros
(HOTKEY, TIMER, MESSAGE, KEYSTROKE, MOUSECLICK,
MOUSEMOVE, JOYSTICKMOVE, JOYSTICKBUTTON, and NETPACK)
that declare initializers to the array. The END_CUELIST macro declares the
terminal entry and C++ tokens for the array.

CHAPTER 8: Theatrix Technical Specifications

The static Hand::initialize_hands function iterates through the static
array of instantiated Hand objects and calls the GetMessageMap function of
each one. If the function returns a non-null pointer, the program iterates
through the array of event structures in the Hand object’s message map. For
each entry, the program requests the appropriate cue for the hand, specifying
the callback function in the message map entry.

Directors

Objects of classes derived from Director run the game. The Director class is
derived from the Hand class, so Director objects may request and receive
cues.

One Director object at a time is in control of the game. As Director objects
are constructed, they are added to the list of directors that the Theatrix class
object maintains. Their order in this list represents their logical order of
execution. The first director in the list is the first director given control.
When that director relinquishes control, the second director in the list gets
control. When the last director in the list relinquishes control, the game is
over. Directors relinquish control by calling the Hand::stop_director
function. If a director wants to pass control to a specific director other than
the next one in the list, the controlling director (or one of its other Hand
objects) calls Hand::start_director and passes the typeid of the director object
that will take control.

Folders

Each instantiated Director object has eight objects of classes derived from the
Folder class, which is declared in folder.h (see Appendix B). There is one
folder for each of the event devices, and they are all derived from the Folder
abstract base class. Each Folder class has a dispatch function that dispatches
event cue messages to those Hand objects that have registered for the cues.
The event servers previously discussed call the Folder classes’ dispatch
functions when events are sensed.

We will continue our explanation of events and messages by addressing
the keystroke event. Each Director contains one KeystrokeFolder object, the
essence of which is shown here. You can view the entire class in folder.h and
keyfold.h in Appendix B.

167

158 C++ Games Programming

class KeystrokeFolder : public Folder {
EventHandler key[NUMKEYS];

public:
KeystrokeFolder() : Folder(key, NUMKEYS) { }
void dispatch(int, int, int);

bs

The array of EventHandler objects in the KeystrokeFolder class is the
dispatching table. There is one such object for each possible event. In this
case, there is one EventHandler object for each possible keystroke. The
essence of the EventHandler class is shown here. You can view the entire
class in handler.h in Appendix B.

class EventHandler {

LinkedList<subscription> slist;
public:

void execute callbacks(int p1=0, int p2=0, int p3=0);
1<

Each EventHandler object includes a linked list of subscription objects. The
subscription class is declared in handler.h:

struct subscription {
Hand* hand;
callback cb;
subscription(Hand*h, callback c) : hand(h), cb(c)
]
¥

The callback type is a typedef declared in hand.h as shown here:

typedef void(Hand::*callback) (int,int,int);

Each subscription object contains the address of the Hand object that
requested the event cue message and the address of the Hand object’s
callback function. Figure 8.1 illustrates the relationship of directors, folders,
event handlers, subscriptions, and callback functions.

CHAPTER 8: Theatrix Technical Specifications 159

Director

Folders

!'F EventHandlers

-

subscriptions

Hand* | (*callback)0

Figure 8.1 Event cue message data structures

A Folder object’s dispatch function uses the data passed to it by the Server
object’s check function to determine which event occurred and which
callback function to execute, as shown here:

void KeystrokeFolder::dispatch(int ascii, int aux, int)
{
int code=(aux<<8)+ascii;
if (aux)
key[aux+AUX_0FFSET].execute_cal]backs(code):
else
key[asch’].execute_cal]backs(code);
}

The KeystrokeFolder::dispatch function uses the combined argument values
of its ascii and aux parameters to develop a key code and to vector into its
array of EventHandler objects to select a linked list of subscriptions to
service.

Figure 8.2 illustrates the logical relationships between the game
components during initialization and game play.

160 C++ Games Programming

Hand requests a cue

During Hand —w | Director g:oml::
initialization ... folder a folder

Using the folder

pplied by Director, .

e oand the | Director

cue divectly to the
gameplay... Theat

server

Figure 8.2 Event cue message logical flow

The EventHandler::execute_callbacks function iterates through the selected
linked list of subscription objects and calls the functions that have values in

the callback function pointer, as shown here:

void EventHandler::execute_callbacks(int pl, int p2, int p3)
{
Hand* h;
callback cb;
subscription *ptr=slist.FirstEntry();
while (ptr) {
h=ptr->hand;
ch=ptr->cb;
ptr=slist.NextEntry();
(h->*cb)(pl, p2, p3);

VideoDirector

The VideoDirector class, declared in viddir.h (see Appendix B), is derived
from Director and handles full screen displays, page buffer management,
and playing motion video clips. Some games might derive their director

CHAPTER 8: Theatrix Technical Specifications

classes directly from VideoDirector, but most of them will use
SceneryDirector, SceneDirector, or both. These two classes are discussed in
the next section.

The main purpose for the VideoDirector class is to encapsulate the full-
screen video functions of the graphics library. VideoDirector initializes the
video system, displays a scene from a .PCX file on the screen, plays .FLC
motion video files, and provides functions to manage the three Mode X video
page buffers.

The class uses the graphics libraries functions to play .FLC files but does
its own timing of the frame rate. An .FLC file includes a field that specifies
its frame rate, but if we tell the graphics library to use it and the program
displays a mouse cursor, there is an annoying flicker of the mouse. You
have to hide the mouse cursor while you display each frame, and the
graphics library uses its own built-in delay to implement the frame rate.
The mouse cursor is hidden during this delay, resulting in the flicker.
Instead of allowing that, we tell the graphics library to ignore the frame rate
and to display one frame at a time. The overriding iterate_director function
gets called once each iteration of the director’s loop to check for events, and
that function hides the mouse cursor, displays the frame, restores the
mouse cursor, and then implements its own delay loop.

VideoDirector supports buffer page management with functions that
copy, swap, and synchronize the contents of the three video page buffers. To
use these functions, the programmer must understand the relationship
between the three buffers and the other functions that write to the buffers.
Most of these details are used and hidden by the SceneryDirector and
SceneDirector classes.

VideoDirector supports the display of sprites by providing a low-level
patch facility. A patch is a rectangular subsection of the screen, usually used
to define the space that a sprite occupies. A program can build a table of
patch regions by calling the set_synchpatch function once for each patch.
Later you can use the synch_patches function to copy the patch regions from
either the visible or the hidden page to the active page. You can also work
with individual patches. To use these functions and work with patches, the
programmer must understand the relationship between the three buffers and
the other functions that write to the buffers. Most of these details are used
and hidden by the SceneDirector and Player classes.

161

162

C++ Games Programming

SceneryDirector

The SceneryDirector class, declared in scenery.h (see Appendix B), supports
the display of static scenes where animation is not involved. Game programs
use this class to implement information screens, menus, and help screens.
SceneryDirector is also useful for implementing Myst-like games that
involve high-resolution, 3-D modeled, ray-traced scenes where game motion
is superimposed over the scenery with .FLC sequences.

SceneryDirector implements most of the mouse operations that games
use. The header file defines the DECLARE_MOUSECURSORS,
CURSORLIST, MOUSE_CURSOR, and END_CURSORLIST macros. When a
derived class includes the DECLARE_CURSORLIST macro, the C++
preprocessor translates that statement into the declaration of a static array of
structure objects that represent screen regions. Each element in the array
contains rectangle coordinates, a pointer to a bitstream array that defines a
cursor shape, and the address of a callback function. The
DECLARE_CURSORLIST macro also declares an inline function named
GetMouseCursors that returns the address of the array. This function
overrides a virtual function in the base SceneryDirector class that returns a
null pointer.

The CURSORLIST macro expands into the definition of the array that the
DECLARE_CURSORLIST macro declares. The MOUSE_CURSOR macro
declares initializers to the array. The END_CURSORLIST macro declares the
terminal entry and C++ tokens for the array.

SceneDirector declares its own CUELIST table to be cued when the user
presses the Esc key, space bar, or Enter key. These actions cause the
SceneryDirector object to call stop_director to relinquish control to the next
director.

SceneDirector

The SceneDirector class is derived from SceneryDirector. SceneDirector adds
support for animated sprite actions and is a companion class to the Player
class. The SceneDirector object in control expects to manage all the currently
active Player objects. To make that happen, you construct the SceneDirector
object and then the Player objects that it owns. If a game has several
animated scenes, you should instantiate the SceneDirectors and Players
together so that they are properly associated. You can ensure that things

CHAPTER 8: Theatrix Technical Specifications

work that way by instantiating the Player objects from within the
constructor of the SceneDirector object.

The SceneDirector object maintains a list of the Player sprites that it
controls. The order of that list implements the Z-order of the sprites when
they are displayed on the screen, and sprites change their place in the list to
change their Z-order as they move among one another. On each tick of the
system timer, the SceneDirector object iterates through its list of Player
objects and calls the displayframe function of each one so that the Players
can update their images and positions and copy the images into the active
page. When all the sprites have done that, the SceneryDirector object swaps
the active page—where the sprites wrote updated images—with the visible
page so that the formerly active page is visible and vice versa. Then the
SceneryDirector object calls VideoDirector::synch_patches, which restores
the active page to the original background without sprites ready for the next
timer tick and frame update cycle.

More Hands

All Director classes are derived from Hand. Other Hand classes implement
sprites and play music. This discussion describes them and some of the
classes that support them.

Media

Two of the classes derived from Hand—VocalHand and Performer—include
objects of classes derived from the Media base class. This base class, shown
in the file media.h in Appendix B, defines thc common behavior of sound
clips and graphical images.

Theatrix begins a game by loading into memory all the sound clips and
graphical sprite images from disk file libraries. A structure named MediaClip
describes the clips and images with respect to their dimensions, a pointer to
their contents, and an offset into XMS where the clip or image can be stored.

There can be many libraries of clips and images. Each sprite usually has its
own libraries of sounds and image frames. When the Hand object that
represents a sprite is initialized, it calls the Media::load_library function to
load its libraries into memory. The function reads the library and stores the
clips or images in XMS if XMS is available, and in conventional memory
otherwise.

163

164

C++ Games Programming

The Media class keeps track of these memory libraries with a static array
of objects of the MediaLib structure. This structure includes a pointer to an
array of MediaClip objects, one for each clip or image in the library.

The GetClip function provides access to the clips and images. When a
Hand object wants to make a sound or display its image, it calls GetClip
with library and clip indexes to specify which clip or image to return.

As far as the Media class is concerned, these clips and images are bit
streams to be read from a disk file, stored in memory, and returned to callers
when callers ask for them. The only difference at this level between graphical
images and sound clips is that graphical images have width and height
dimensions and sound clips do not. The derived classes GraphicsMedia and
SoundMedia make that distinction and add nothing more to the behavior of
the base class.

It is up to the callers to GetClip to decide what to do with the bit streams
once they have them.

VocalHand

The VocalHand class, declared in vocal.h (see Appendix B), is derived from
the Hand class. VocalHand objects generate sound effects, and the
VocalHand class gives the object the behavior needed to do that. The class’s
public interface includes functions to load sound effects library files, play and
stop sound clips from those files, and test to see whether a sound clip is
playing.

The VocalHand class includes a static object of type SoundMedia and an
integer that specifies which of several sound libraries the object of the class is
using. A Theatrix game maintains one SoundMedia object, which contains
an array of MediaLib objects. At any given time, a VocalHand object is using
one of those MediaLib objects from which to select sound clips to play.

When the Theatrix object calls the static VocalHand::startup function, the
function attempts to load a sound driver program into memory. There are
two possible sound driver programs. The first is DIGPAK’s driver in a file
named soundrv.com. Chapter 11 discusses DIGPAK. The other driver is the
Sound Blaster’s CT-VOICE driver. Both programs are what are known as
loadable drivers, which means that you load them into memory from within
your program and then call functions within them by using offsets from the

CHAPTER 8: Theatrix Technical Specifications

beginning of the buffer where you loaded the driver. The CT-VOICE driver
supports only Sound Blaster sound cards. The DIGPAK driver can be
configured to support one of several sound cards.

The VocalHand::startup function loads the DIGPAK driver if it exists in
the current logged-on subdirectory. Otherwise, it loads the CT-VOICE driver,
first testing the SOUND environment variable to see where to find the driver
file, which is named ct-voice.drv.

The DIGPAK driver has two function entry points in fixed locations from
the start of the driver’s memory. The first pointer points to the driver’s
initialization routine. The second pointer points to the driver’s de-
initialization routine. The program plays and stops sound clips by generating
a software interrupt through interrupt vector 0x66 with register values
specifying the functions to be performed.

The CT-VOICE driver has one entry point for all operations and uses
values in CPU registers to specify the functions to be performed. The entry
point is at the beginning of the load module and is a pointer through which
you call to use driver functions. The program initializes the CT-VOICE driver
by calling functions that set the IRQ, the port, and the address of a status flag
that the program uses to test the status of sound clips.

Performer

The Performer class, declared in perform.h (see Appendix B), is derived from
the VocalHand class. Performer adds the ability to display on the screen
graphical images selected from a library of images. A Performer object can
make sounds and display images of itself.

The Performer class includes a static object of type GraphicsMedia and an
integer that specifies which of several image libraries the object of the class is
using. A Theatrix game maintains one GraphicsMedia object, which contains
an array of MediaLib objects. At any given time, a Performer object is using
one of those MediaLib objects from which to select images to display. A
Performer object uses its load_gfxlib function to load its library of images
into memory.

When the Performer object determines that an image frame is to be

displayed, it calls one of the image-displaying functions of its base Performer
class. That function calls into the Fastgraph library to perform the display.

165

166

C++ Games Programming

Player

The Player class, declared in player.h (see Appendix B), is used in
combination with the SceneDirector class to give sprites the behavior of
animation. The Player class is derived from the Performer class. It maintains
information about a sprite’s current image number and screen position as
well as whether the sprite is currently in view. It also stores information
about clipping parameters when a sprite is only partially in view.

A Player object assumes that it is being managed by a SceneDirector
object. The Player constructor associates the Player object with the currently
running SceneDirector object. When the Player object’s initialize function is
called from the Hand::initialize_hands function, the Player object loads its
graphics and sound effects libraries.

A Player object is programmed to refresh its screen image at a regular
interval specified as a number of clock ticks. Once every clock tick, the
SceneDirector calls the Player::displayframe function. The SceneDirector has
prepared the active page to be updated with new sprite images, and
SceneDirector calls displayframe for each sprite in Z-order sequence so that
the nearest sprite is called last.

The SceneDirector and Player classes coordinate the display of the sprites
on the background scenery. The game-dependent sprite classes derived from
Player specify which images from their libraries are to be displayed and
where on the screen they are to be displayed.

The displayframe function uses a countdown variable to see whether the
Player’s refresh interval has expired. If it has, displayframe calls
update_position. A class derived from Player must provide an
update_position function that, based on the game’s circumstances,
establishes the image number and position by calling Player::setxy and
Player::set_imageno. The only valid place to make these changes is from
within the update_position function. If a sprite class calls those functions
from outside the update_position function, the Player class makes note of
that condition, saves the changed values, and applies them just before calling
update_position.

MusicHand

The MusicHand class, declared in music.h (see Appendix B), integrates MIDI
music files into the game. MusicHand is derived from Hand, but it has no

CHAPTER 8: Theatrix Technical Specifications

director. You usually instantiate an object of MusicHand, use that object to
load an extended MIDI file (.XMI), and play selections from the file.

MIDI songs are supported only through the shareware MIDPAK driver,
which is a loadable device driver very much like the DIGPAK driver. The
MusicHand::startup function loads the driver, initializes it, and establishes
communication with it to play songs. You communicate with the driver by
using interrupt 0x66, just as you do with the MIDPAK driver.

Unlike .GFX and .SFX files and their drivers, only one .XMI file at a time
may be associated with the MIDPAK driver. The load _score function
allocates memory for the .XMI file, loads it into memory, and calls into the
driver to associate the file’s memory image with the driver.

Playing, stopping, and testing for music clips are done with calls to
interrupt 0x66 with arguments set into the CPU registers.

File Formats

Theatrix uses four types of input files: .PCX files, .GFX files, .SFX files, and
XMI files.

Scenery: PCX

The .PCX format stores background scenery images in 320 x 240, 256-color
format. The file consists of header data, a palette record, and an array of color
bytes, with one byte per pixel.

Sprites: GFX

.GFX files are generated with the GFXMAKE utility found in the \thx\bin
directory of the included CD-ROM. A .GFX file stores a variable number
of graphical bitmaps, each of which can be any size under 64KB. Each
record is an image stored as a binary stream. Figure 8.3 shows the format
of a .GFX file.

167

168 C++ Games Programming

GFX | on
F'l int
e width height size data T |
| 1l Il Il 1
Format i = o= s
width height size data]
| I I Il | p |
int int long char[size]
® o0
width height size data
l It Il Wil count
int int long charfsize]

Figure 8.3 The .GFX file format

The data item is an integer that contains a count of the number of image
records in the file. This count is followed by the image records themselves.
Each record begins with the pixel width and height of the image when it is
displayed on the screen. Next is a long integer that contains the size of the
image bitmap in bytes. This size field is followed by the image bitmap,
consisting of one byte per pixel in the image.

Sound Effects: SFX

.SFX files are generated with the SFXMAKE utility found in the \thx\bin
directory of the included CD-ROM. An .SFX file stores a variable number of
sound clips, each of which can be any size under 64KB. Figure 8.4 shows the
format of an .SFX file.

CHAPTER 8: Theatrix Technical Specifications 169

SFX

int

F'Ie size data] I
Format ‘! 'L '
long char[size] |
size data 7] 2
| Il |
long char/[size] J
® o0
size data
L [lossomgticonil count
long data[size]

Figure 8.4 The .SFX file format

The .SFX format is similar to the .GFX format except that there are no width
and height fields.

Music: XMl

XMI files are collections of MIDI files. The format is required by the
MIDPAK driver. The file is built from standard MIDI files using a utility
program named MIDIFORM. The MIDIFORM program is part of the
MIDPAK shareware distribution. Chapter 11 discusses MIDPAK.

oy ampy

Shootout (see figure above) is a complex demo game that has the simple, hand-drawn
appearance of many arcade-style games. In SkyScrap (see figure below), the player
pilots a jet fighter across a scrolling landscape and shoots at other craft that are
shooting back. The game uses the joystick or the keyboard to move the jet fighter
around and to fire shots. All the games illustrated in this insert are included on the
accompanying CD-ROM.

The Marble Fighter demo game pits two players in a kick-boxing match. Both players
can be humans, playing at different PCs, or one player can play against the computer.
Marble Fighter uses an intro screen, a help screen, and a menu in addition to the
action part of the game.

Kick INSERT
Punch SPACE

Block B

Mowve left LEFT ARROLD
Move right RIGHT ARROLD

Quit ESCAPE

A tombstone (see figure above) serves as Marble Fighter’s menu which is designed so
that page flipping can be used to change menu selections. The fighter objects can kick,
punch, and block.The fighters use sound effects for hits, groans, and shrieks. The game
records the scoring in video slider bars above the fighters (see figure below).

The skaters in these figures were built with NeoPaint. As a skater moves around in a
figure eight, the program coordinates where the skater displays. To suggest a third
dimension, the game moves the skater up the Y axis when the skater is skating away
from the player (see figure above) and down the Y axis when the skater is skating
toward the player (see figure below).

The sprites in these figures were built from MORAY 3-D models and rendered with
POV-Ray.

Planning the scenes in a game involves figuring out where the user’s viewpoint should
be for each scene.The figures show a map of a town by moving the camera high in the
sky and pointing it downward. The game’s camera locations can be determined for
each scene. From these legends it can be determined where to place the camera to
render each scene from the 3-D model, and which scene to change to when the user
moves away from the current scene in one of the four directions.

The figure above is a montage of all scenes in the Town demo game.Twelve scenes are
not many for a complex game.

ww Wwwwww

b e

W

Theatris emulates a type of
interactive board game that uses a
variable number of games pieces
that fall into a pit. This game
features a unique menu, the
implementation of the pit using
grid logic, and data structures that
implement the game pieces. The
Tic-Tac-Toe demo game (see
figure below) is a typical board
game. It uses nonanimated sprites
and adds sound effects.

Development
Environment

“Winning isn’t everything, it’s the only thing.”
Vince Lombardi (attributed)

We've revealed the innards of a lot of software and data files so far, and we’ll
expose even more in Chapters 10 and 11. All the different components of a
game program can be overwhelming. How does one keep track of all that
stuff? How do several programmers on a development team keep in step?

This chapter explains how we organized the development of the
demonstration games for this book. There were three programmers writing
games and maintaining and modifying the library. Whenever there are
multiple programmers, you’ll find that concerns of organization,
collaboration, and coordination become important. It’s easier than you might
think to let things get out of control. You can use this example of one
project’s organization to gather your own resources together and keep them
in tow. You will learn how to manage these items:

@ Subdirectories © Data files
@ Source code © Using a network
@ Libraries @ Configuration management

© Utilities and tools

171

172 C++ Games Programming

The Game Developer’s
Subdirectory Structure

Figure 9.1 shows part of the subdirectory structure that you find on the
included CD-ROM. This organization reflects the structure that we used to
develop the demo games for this book. To keep the figure small, we do not
show all the demos—only enough of them to illustrate how we organized our
project.

\THR

——INCLUDE
—LIB
—BIN
——DEMOS
——MFIGHTER

—SOURCE
|:'lI|HERTﬂlx
TILS

Figure 9.1 Subdirectory structure

CHAPTER 9: Managing the Development Environment

Pay close attention to the subdirectories under the DEMOS subdirectories.
These are the game projects themselves. Each subdirectory under DEMOS
includes all the files needed to build and run one game. Your games might
be organized similarly under an appropriately named subdirectory, such as
GAMES.

Each game subdirectory has an EXEC subdirectory where the executable
game program and its data files are built. The BUILD subdirectory is where we
keep all the source code and data to build the game. Below BUILD are more
subdirectories for graphical elements, sound effects, video clips, and so on.

Libraries and tools that are not a part of Theatrix (Fastgraph, and so on) are
installed in their own subdirectories according to the conventions specified
for the programs themselves. We will discuss the organization of these
programs later.

Source Code

There are several source code categories that contribute to the game. In
addition to your source code, there are the source code to the library, some
header files, and the source code to the utility programs.

MAKE.CFG

The subdirectory \THX\SOURCE contains a file named make.cfg that you
must modify in order to use the makefiles with the demo games. These
makefiles include make.cfg, which establishes some global macros for
making the game. You change those macros to reflect where you have
installed the library and tools. Pay careful attention to these macros and
double-check to ensure that you set them correctly. They permit the game
makefiles to find header files, libraries, and tools.

Listing 9.1 shows make.cfg with a typical setup.

173

174 C++ Games Programming

Listing 9.1 MAKE.CFG

4}
s

MAKE.CFG - common make configuration (lincluded in makefiles)

L.
mw

i --=> User-configurable macros <---

f Set DRIVE to where you installed everything

Example: DRIVE=c:

(you can override individual DRIVE usages if you install on
multiple drives>)

Set COMPILER to where you installed Borland C++
Example: COMPILER=$(DRIVE)\bc45

Set MODEL to the memory model (t,s,m,c,1,h) of the compile
Example: MODEL=1 (recommended)

Set FASTGRAF to where you installed Fastgraph
Example: FASTGRAF=$(DRIVE)\fg

Set THEATRIX to where you installed Theatrix
Example: THEATRIX=$(DRIVE)\thx

CHAPTER 9: Managing the Development Environment

THEATRIX=$(DRIVE)\thx

Set DTA to where you installed Dave’s .TGA Animator
Example: DTA=$(DRIVE)\dta

Set POVRAY to where you installed POV-Ray
Example: POVRAY=$(DRIVE)\povray

{fPOVRAY=$ (DRIVE)\povray
POVRAY=c:\povray

Delete the COMPILEDEBUG macro to build without
debugging information in the .EXE

JL.
w

f# Set up debugging / nondebugging environment

1if $d(COMPILEDEBUG)
LINKDEBUG = /v

lelse

COMPILEDEBUG = -DNDEBUG
lendif

175

176 C++ Games Programming

1if 1$d(DRIVE)
lerror DRIVE isn’t defined
lendif

1if 1$d(COMPILER)
lerror COMPILER isn’t defined
lendif

1if 1$d(MODEL)
lerror MODEL isn’t defined
lendif

1if 1$d(FASTGRAF)
lerror FASTGRAF isn’t defined
lendif

1if I$d(THEATRIX)
lerror THEATRIX isn’'t defined
lendif

1if 1$d(POVRAY)
lerror POVRAY isn’t defined
lendif

1if 1$d(DTA)
lerror DTA isn’t defined
lendif

THXINC=$ (THEATRIX)\include

THXBIN=$ (THEATRIX)\bin

THXLIB=$ (THEATRIX)\1ib\theatrix.1ib

FGINC=$ (FASTGRAF)\incTude

FGLIB=$ (FASTGRAF)\1ib\fg$ (FGLITE)$(MODEL).11b

COMPILEPARMS=-d -c -w -m$(MODEL) -H=$(HEADERS) $(COMPILEDEBUG)
INCLUDES=-TI$(FGINC) -I$(THXINC)

CHAPTER 9: Managing the Development Environment 177

COMPILE=bcc $(COMPILEPARMS) $(INCLUDES)

LINK=tTink $(LINKDEBUG) $(COMPILER)\1ib\cO$(MODEL)
CLIB=$ (COMPILER)\1ib\c$(MODEL)

EXEC=..\exec

.cpp.obj:
$(COMPILE) ($*)

POVFILES=$*.def -i$*.pov -o$*.tga
POVSW=+v +x
POVDIRS=-1$(POVRAY)\include -1$(POVRAY)\fonts

.pov.pcx:
povray $(POVDIRS) $(POVFILES) $(POVSW)
alchemy -o -p -8 $*.tga
del $*.tga
copy $*.pcx $(EXEC) /Y
del $*.pcx

Game Source Code

The BUILD subdirectories contain the source code for the game program. We
included all of each game’s header and .CPP files in this one game-related
subdirectory. This subdirectory also contains the game’s makefile.

Header Files

In addition to its own header files, a game program must include the header
files for the class and function libraries that it uses. To build games, we use
the standard C and C++ header files and two other libraries. The header files
for the Theatrix class library are stored in \THX\INCLUDE. The header files

178 C++ Games Programming

for the Fastgraph graphics function library are in the INCLUDE subdirectory
under the subdirectory where you install Fastgraph. Make sure that Fastgraph
is properly installed and that the THEATRIX and FASTGRAF macros in
make.cfg are properly set.

Library Source Code

Although you might never need to modify the Theatrix class library, its
source code is available to modify or merely for study. The .CPP source code
for the library modules is in \THX\SOURCE\THEATRIX. The header files
used by the library are the same header files that a game includes, and they
are found in \THX\INCLUDE.

Utility Programs Source Code

Theatrix includes several utility programs for building and testing graphical
elements and sound effects. The source code for these programs is found in
\THX\SOURCE\UTILS.

Game Data Files

In addition to source code files, each game consists of one or more other
component files—graphics, sound effects, movies—that contribute to its
build. The organization of these elements into subdirectories is usually
dependent on how many of them are involved and how the game uses them.

Background Scenery Files

If background scenery files are used just as they come from the paint or ray-
tracer tools, you can store their .PCX files directly in the EXEC subdirectory;
they need no conversion or other processing to prepare them for the
executable game. We usually keep originals in subdirectories under BUILD
and allow the makefile to copy them across. This technique permits us to
build an entire game starting with an empty EXEC subdirectory.

Often, the scenery palettes must be normalized with one another and with
the sprites and cursors in the game. In this case you must put the original

CHAPTER 9: Managing the Development Environment

copies of the .PCX files in subdirectories and let the makefile build the
normalized versions for the EXEC subdirectories. To store these originals,
you might use a subdirectory named something like BUILD\SCENES.

Sprite Image Files

A game with a few sprites might store all their images in one .GFX file. More
complex games store the images of each sprite in its own .GFX file. Either
approach works, but the latter is more manageable. The game build
procedure converts collections of sprite frame images into .GFX files, and the
makefile contains commands to make these conversions by using the
GFXMAKE utility program.

We use a convention where each .GFX file is built from sprite image .PCX
files taken from a sprite-dependent subdirectory. For example, the Skater
game, which has only three sprites with only one moving sprite, keeps the
images for the sprites in BUILD/GFX. The Shootout game—which has seven
moving sprites, three doors that open and close, and digits that update a
scoreboard—uses subdirectories for each of these sprite components and
builds a separate .GFX file for each.

Sound Effects

A game may have one or more .SFX files to contain its sound effects. We
usually store the .VOC sound clip files in a subdirectory for each .SFX file to
be built. Most of our games use only one .SFX file and have a BUILD\SFX
subdirectory to hold the .VOC files that make up the .SFX library file.

MIDI Music Files

A game can have only one .XMI file, no matter how many MIDI clips are
used. We use a subdirectory named BUILD\MUSIC to store the .MID files
that make up the .XMI library of MIDI songs.

Libraries

The object library for the Theatrix class library is stored in \THX\LIB. The
object library for the Fastgraph graphics function library is in the \LIB

179

180 C++ Games Programming

subdirectory under the subdirectory where you install Fastgraph. Once again,
| make sure that Fastgraph is properly installed and that the THEATRIX and
FASTGRAF macros in make.cfg are properly set.

DIGPAK/MIDPAK Drivers

Games that include music need a properly set up MIDPAK driver installed
into their EXEC subdirectory. Games with sound effects that are to work
with sound cards other than the Sound Blaster need a properly set up
DIGPAK driver installed into their EXEC subdirectory.

Setting up these drivers involves the users’ participation. They must run
the program named SETUP that accompanies the DIGPAK/MIDPAK
distribution. You cannot automate this process with a makefile unless you
are the only user of your game program. You can, however, include the
procedure in your own setup program or batch file that you distribute with
your game.

The loadable driver modules do not exist before you run the
DIGPAK/MIDPAK SETUP program. The SETUP program generates the files
named soundrv.com, midpak.com, midpak.ad, and midpak.adv. Those files
must be copied into the game’s EXEC subdirectory before the game can
generate sound and music.

Utilities and Tools

There are some utility programs and graphical and sound-generating tools
that you use to build the game’s operating environment. The most obvious
ones are the compiler and its utilities. The make procedure uses several
others discussed here.

Theatrix Utilities

Theatrix includes utility programs that build .SFX sound effect libraries and
.GFX graphics libraries and other utilities that normalize palettes among the

CHAPTER 9: Managing the Development Environment

many graphical elements of a game. The executables of these programs are in
\THX\BIN. You must have this subdirectory in your DOS path to run these
programs from the makefiles.

POV-Ray

POV-Ray is a ray-tracing program that converts scripted 3-D models into
.TGA graphical images. To run the makefile procedure, you must have POV-
Ray properly installed and the subdirectory of its executable files in your
path. We use POV-Ray to render some of our backgrounds and sprites.

Because of an exclusive publishing agreement between POV-Ray’s
proprietors and another publisher, POV-Ray is not included on the CD-ROM
that accompanies this book. It is, however, freely available, and you may use
it without having to pay license or royalty fees. It is available on the
CompuServe Information Service in the GRAPHDEV forum.

Image Alchemy

The Image Alchemy utility program converts bitmapped graphics files from
one format to another. You must have it installed and its executable
subdirectory in your DOS path. We use Image Alchemy to convert from POV-
Ray’s .TGA output to the .PCX format that Theatrix uses.

DTA

One of the functions of Dave’s .TGA Animator (DTA) program is to translate
.PCX frame files into .FLC movie files. To use makefiles that build .FLC files,
you must have DTA installed and its executable subdirectory in your DOS
path.

MIDIFORM

MIDIFORM is a utility program that builds .MID files into the .XMI
library format. The program is a part of the DIGPAK/MIDPAK
distribution. You must have MIDIFORM installed and its executable
subdirectory in your DOS path.

181

182 C++ Games Programming

Game MAKEFILE

The makefile in a game pulls together the raw source code, the library files,

and the graphical and sound elements to build the executable game, which

consists of a DOS executable program, .PCX files of scenery, .SFX files of

sound effects, .GFX files of sprite images, and an .XMI file of music. Listing
| 9.2 is the makefile for the Skater game.

Listing 9.2 Skater makefile

linclude ..\..\..\source\make.cfg

EXEC=..\exec

all : $(EXEC)\skater.gfx
$(EXEC)\skater.sfx
$ (EXEC)\skater.xmi
$ (EXEC)\pond.pcx
$ (EXEC)\skater.exe
echo done

L e e

$ (EXEC)\pond.pcx : gfx\pond.pcx
copy gfx\pond.pcx $(EXEC)\pond.pcx

$(EXEC)\skater.xmi : music\skater.mid
midiform $(EXEC)\skater.xmi music\skater.mid

$(EXEC)\skater.gfx : skater\skaterl.pcx
skater\skater2.pcx
skater\skater3.pcx
skater\skater4.pcx
skater\skater5.pcx
skater\skater6.pcx
skater\skater7.pcx
skater\skater8.pcx
skater\skater9.pcx

SR S WL T O L e

CHAPTER 9: Managing the Development Environment 183

skater\skaterl0.pcx \
skater\skaterll.pcx \
skater\skaterl2.pcx \
skater\skaterl3.pcx
gfxmake $(EXEC)\skater.gfx @skater\skater.bld

$(EXEC)\skater.sfx : sfx\water.voc
sfxmake $(EXEC)\skater.sfx sfx\water.voc

$(EXEC)\skater.exe : skater.obj $(THXLIB)

$(LINK) skater,$(EXEC)\skater,, $(FGLIB) $(THXLIB) $(CLIB)
'if $d(FGLITE)

echo > $(EXEC)\sk.bat $(FASTGRAF)\fgdriver

echo >> $(EXEC)\sk.bat skater

echo >> $(EXEC)\sk.bat $(FASTGRAF)\fgdriver /U
lendif

Observe the last five lines in the makefile in Listing 9.2. If you build a game
program by linking with the Fastgraph Lite object library, running the game
requires that you first load the Fastgraph Lite fgdriver.exe memory-resident
graphics driver program. When the game exits, you should unload the
memory-resident driver. The makefile builds a batch file named sk.bat that
loads the driver, executes the game program, and then unloads the driver
when the game program terminates.

Game Executable Files

Following a successful make procedure, all the files needed to run the game
should be in the subdirectory named BUILD\EXEC. No other files should be
in that subdirectory, so you can copy everything from it to your distribution
disk. However, when you use BUILD\EXEC for testing your program, there
are residual debugger files with names such as TDCONFIG.TD and TD.TR.
You should delete these files before you build a distribution disk.

Remember that there are files associated with our CD-ROM that you may
not distribute with your executable programs without first obtaining the

184

C++ Games Programming

necessary licenses. The DIGPAK and MIDPAK drivers have licensing
restrictions, which are quite reasonable for commercial distributors and more
than friendly to shareware and freeware distributors. You may not under any
circumstances distribute the Fastgraph Lite shareware driver. You must
obtain a licensed copy of the commercial Fastgraph linkable library and link
your executable programs with that library before you distribute anything.

See Chapter 11 for a discussion of all the tools and how to license them.

Network Rendering

Ray-tracing is a time- and processor-intensive procedure. Some of our games
have many scenes and sprites that we render with POV-Ray. Fach time we
change a model, POV-Ray has to render a new image of the scene or sprite
frame. POV-Ray is slow.

In managing our project, we found many uses for a network. One of the
most productive ones off-loads the rendering task onto a server on the
network. We wrote a program named POVNET that runs on a server, waits
for .POV model files to render and launches POV-Ray to render, the models
into image files.

The POVNET program, described in more detail in Chapter 11, runs in a
DOS box in the server (we used a Windows 95 site for the server). Whenever
one of us has a new model to render, we copy the .POV model file into a
designated subdirectory on the server. POVNET observes the new model and
launches POV-Ray. We can monitor its progress from our work stations and
retrieve the newly rendered image file to add to our game when POV-Ray has
completed rendering it.

Configuration Management

Every software development project has this problem. How do you keep up
with all the components of a program or system when more than one
programmer are working independently on common or dependent elements
of the system? With a one-person project, it is easy to lose control when there
are many elements in a complex system. As you add people, the potential for
error rises exponentially. A game project might involve many people—

CHAPTER 9: Managing the Development Environment

programmers, artists, sound effects specialists, musicians, script designers,
and so on. Each of them can be building and adding pieces to the game as
development proceeds. Coordination and synchronization of the various
pieces and parts can be an arduous task. There are steps you can take to get it
under control.

Formal development projects use computer assisted software engineering
(CASE) and version-control tools. We think that these tools not only are
overkill for a game project, but they also tend to formalize, institutionalize,
and bureaucratize an activity that starts out mainly to be fun.

We are going to discuss guidelines that you can use to implement
procedures to help you control your project. They work if everyone is easy to
get along with and can adjust to inconvenience from time to time. If, however,
there are prima donnas on your team who are disagreeable and uncooperative,
then these guidelines will not work. Neither will anything else.

The Objective

Your objective in software configuration management is to make sure that
everyone works from a common baseline of software components and that
when someone changes a part of the system, the following things happen:

O The change is tested with the baseline and works as intended.

© The change is tested to ensure that it does not interfere with, conflict
with, or otherwise compromise the work that others are doing.

© When approved, the change is integrated into the baseline and
everyone gets the new stuff.

Those objectives seem reasonable and attainable. But anyone who has
worked on a software development project of any size knows how elusive
these goals can be. Game projects are more fun than other jobs, but they are
as susceptible to the vagaries of a disparate staff as any other kind of
cooperative enterprise.

The Network

The network is a valuable tool in keeping a grip on the software
configuration, especially if the network supports primitive groupware actions
such as broadcast messages and protected read or write access at the

185

186

C++ Games Programming

subdirectory level. Netware, Windows NT, Windows for Workgroups, and
Windows 95 all support mail and password-protected read-only access to
remote subdirectories.

The Configuration Manager

In a big software development project, configuration management is a full-
time job, perhaps even involving a staff of several people who watch over the
configuration and keep it under control.

A game project will not usually be that big unless you are building one of
those extravaganzas that involve Hollywood actors and who knows what.
Nonetheless, on any multiperson software development project, the
responsibilities of configuration manager must be assigned. One person
should assume those duties, and the other team members must acknowledge
and respect that person’s authority.

This delegation of authority introduces an anomoly. The boss never wants
the mundane duties of configuration manager. Yet the boss is usually writing
code. All programmers view configuration management as a pain in the
hindquarters—an impediment to getting things done—because it places a
wall between them and the current baseline. They have to go through a
bothersome procedure to implement a change. The boss, being a programmer,
runs into that wall just like everyone else and sometimes uses his or her
position to overrule the configuration manager’s authority. If you are the
boss, don’t let that happen.

Nobody likes the configuration manager, so don't take the job if you need
to be liked.

The Baseline

The baseline is a read-only repository of source code and raw graphics and
sound files. Team members can retrieve files from the baseline, but only the
configuration manager can change files in it or add files to it. T<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>